
Network Evidence Collection

04/21/14 2

Motivation: Heartbleed

• In the news, Heartbleed “Leaves no trace”
– This means it leaves no trace on the server
– The traffic itself contains evidence

• We want to know:
– Was anyone attacked?
– Were we, specifically, attacked?
– By whom?
– What did we lose?
– This is a classic forensics problem.

04/21/14 3

Classes of Data

• Full Content
– Every byte of every packet

• Session Data
– End point information
– Who talked to who, when and how

• Alert Data
– Triggered based on predefined event criteria

• Statistical Data
– Averages of type, time, quantity, etc
– CS4558: Traffic Analysis

04/21/14 4

Full Content Data

• When to collect?
– Pre-incident

• Requires proper planning
• Large storage requirement
• Guaranteed coverage of entire event

– Unless encryption in use
– Post-incident

• Intent is to observe incident related activity

04/21/14 5

Full Content Collection

• Hardware
– Hubs

• Traffic passed to all ports
• Performance penalty – don't really make these any

more, especially at high speeds

– TAPS (layer 1)
• Dedicated copying of packets

– Inline device
• Bridging devices (Ex: Linux box with 2 ethernet ports)

– SPAN ports
• Specialized ports on commercial switches

04/21/14 6

Session Data Tools

• Argus
– http://www.qosient.com/argus/

• Tcptrace
– http://www.tcptrace.org/

• Tcpflow – session rebuilding
– http://afflib.org/software/tcpflow

• Chaosreader – session rebuilding
– http://www.brendangregg.com/chaosreader.html

• Wireshark
– http://www.wireshark.org

http://www.qosient.com/argus/
http://www.qosient.com/argus/
http://www.qosient.com/argus/
http://www.tcptrace.org/
http://www.tcptrace.org/
http://www.tcptrace.org/
http://afflib.org/software/tcpflow
http://www.brendangregg.com/chaosreader.html
http://www.wireshark.org/
http://www.wireshark.org/

04/21/14 7

Alert Data

• Generally NIDS (network intrusion detection
system) alerts
– Snort http://www.snort.org

• Trigger on any part of packet
• Can also save full content
• Can rerun old packets

• Familiarize yourself with you NIDS’ logging
capabilities

http://www.snort.org/
http://www.snort.org/

04/21/14 8

Statistical Data

• Tcpdstat
– http://staff.washington.edu/dittrich/talks/core02/

tools/tools.html
– Summaries of tcpdump capture files

• Wireshark
– Also generates statistics

http://staff.washington.edu/dittrich/talks/core02/

04/21/14 9

Packet Capture: tcpdump

• Open source packet sniffing tool
– http://www.tcpdump.org
– Same people offer libpcap

• Packet capture library
– On Windows you need WinDump/WinPcap

• http://www.winpcap.org/

• By default, prints a short summary of each
received packet

http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.winpcap.org/
http://www.winpcap.org/
http://www.winpcap.org/

04/21/14 10

tcpdump Usage

• Dumps output to console (stdout)
• For session data

tcpdump –i eth0
-i <interface>

• Output numeric ip/port values with –nn switch
tcpdump –nn –i eth0

• Change snaplen (amount of packet captured) with –s
-s 1514 max size of an Ethernet frame
-s 0 Causes capture of entire packet

04/21/14 11

tcpdump Usage (ii)

• Full content monitoring
– Set snaplen to grab entire packet
– Write packets to a capture file

-w <filename>
tcpdump –s 0 –i eth0 –w dump_10_28_03.cap

– No need for –nn switch as raw packet binary data
is being recorded

04/21/14 12

tcpdump Usage (iii)

• tcpdump understands command line packet
filtering rules
– Used to build Berkeley Packet Filter (bpf) rules

• Use rules to restrict content to traffic of
interest for example
– host 131.120.14.2

• Remember you will need to sort through all of
the collected data

04/21/14 13

tcpdump For Headers

• By default tcpdump only examines the first 68
bytes of a packet
– The amount of data actually grabbed is called the

snaplen
– 68 byte is sufficient to grab

• Ethernet header – 14 bytes
• IP header – 20 bytes
• TCP header – 20 bytes
• 14 extra bytes which may be tcp/ip options or

application layer data

04/21/14 14

Monitoring Considerations

• Monitoring machine should be able to see
desired traffic
– Consider network architecture

• Monitoring machine should be invisible to the
network
– Can’t be seen by other users
– Has no IP or the null IP 0.0.0.0
– Consider cutting transmit wire in network cable
– Are you doing name resolution? Is this good?

04/21/14 15

Monitoring Considerations (2)

• Are you getting all the packets?
– How much traffic is on the network
– “Bursty” nature of some transmissions
– How fast can you read from your NIC?

• Kernel dropping packets?
• “packets ``dropped by kernel'' (this is the number of packets that were

dropped, due to a lack of buffer space, by the packet capture mechanism in
the OS on which tcpdump is running, if the OS reports that information to
applications; if not, it will be reported as 0).” – tcpdump man page

• Buffer size? Tcpdump -B

04/21/14 16

Case Study: Heartbleed

04/21/14 17

Potential Damage

• 64 KB of encrypted data
– User passwords, content
– The server's private keys (very bad)

• Google / Paypal:
– We were affected, but don't bother changing your

password.
– Is this irresponsible?
– What does it imply?
– The bug has been around for 2 years...

04/21/14 18

How does it work?

• Classic unchecked array bounds error:
• http://xkcd.com/1354/

04/21/14 19

Transport Layer Security Basics (1)

Graphics courtesy of the Washington Post

04/21/14 20

Transport Layer Security Basics (2)

http://www.washingtonpost.com/news/morning-mix/wp-
content/uploads/sites/21/2014/04/howsslworks.jpg

04/21/14 21

TLS Heartbeat Protocol (1)

• Purpose: keep connection alive
– Avoid cost of a new handshake
– Avoid recalculating MTU

• Defined in RFC 6520
– https://tools.ietf.org/html/rfc6520
– Two message types:

• Request and response

https://tools.ietf.org/html/rfc6520

04/21/14 22

Heartbeat Request/Response

struct {
HeartbeatMessageType type; // 1 or 2; 1 byte

uint16 payload_length; // 2 bytes

opaque payload[HeartbeatMessage.payload_length];

opaque padding[padding_length];

} HeartbeatMessage;

• Max length of payload is 214 bytes (16KB)

• Why so big?

04/21/14 23

Heartbeat Request/Response (2)

• “If the payload_length of a received HeartbeatMessage
is too large, the received HeartbeatMessage MUST be
discarded silently.” – RFC 6520

• Does OpenSSL meet this requirement?

• Actual code before / after patch:

https://github.com/openssl/openssl/commit/96db9023b
881d7cd9f379b0c154650d6c108e9a3#diff-2

Network Data Analysis

04/21/14 25

Wireshark Basics

• Popular tool for traffic collection and analysis
– Open source
– GUI
– Can do both capture and analysis, “live” or “dead”

• Save to File
– Equivalent to
tcpdump –i eth0 –s 0 –w dumpfile

• Load from file
– Load saved capture files generated by Wireshark or

tcpdump

– Any file in pcap save format

04/21/14 26

04/21/14 27

04/21/14 28

04/21/14 29

Wireshark Basics (cont)

• Filtering capability
– One of the best features
– Capture filters use tcpdump style syntax
– Display filters use Wireshark syntax

• Gui expression builder available
• Can greatly reduce amount of displayed data

tcp.port == 23 //telnet traffic

04/21/14 30

Wireshark Basics (cont)

• TCP Stream Following
– Rebuild an entire TCP connection
– Display exact client/server communication

sequence (data only in display window)
– Break out client side or server side comms

separately
– Save data to disk for further analysis

04/21/14 31

Wireshark Time Display

Use menu to change
time display format

Alert from previous
snort slide

04/21/14 32

Data Correlation

• Data from one sensor points to data from
another sensor

• Example
– IDS data contains timestamps
– Use to find specific packets
– System time should match across systems

04/21/14 33

Demo: Honeynet Scan 19

04/21/14 34

Demo: Honeynet Scan 19

• http://www.honeynet.org/scans/scan19
• Packet captures

– Which vulnerability did the intruder exploit?
– What ways, and in what order, did the intruder use to

connect and run commands on the system?
– How did the intruder try to hide his edits from the MAC

times?
– The intruder downloaded rootkits, what were they called?
– Recover the rootkits from the snort binary capture
– What does the rootkit do to hide the presence of the

attacker on the system?

http://www.honeynet.org/scans/scan19

04/21/14 35

Example Snort Alert

[Xref => arachnids 442]
[**] [1:1282:1] RPC EXPLOIT statdx [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
03/15-17:21:29.303241 211.185.125.124:791 -> 172.16.1.108:931
UDP TTL:43 TOS:0x0 ID:30708 IpLen:20 DgmLen:1104
Len: 1084

[Xref => arachnids 442]
[**] [1:498:3] ATTACK RESPONSES id check returned root [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
03/15-17:24:27.552084 172.16.1.108:39168 -> 211.185.125.124:4450
TCP TTL:63 TOS:0x0 ID:79 IpLen:20 DgmLen:76 DF
AP Seq: 0x59606376 Ack: 0x9C6D2C13 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 2897138 23696979

IDS database

Priority Level

Alert time Summary

Source IP:port Dest IP:port[GID:SID:Rev ID]

(Snort's ID numbers)

04/21/14 36

Re-Running Snort

• Snort can be run against a packet capture file
just as easily as it can run in real time

snort -c /etc/snort/snort.conf -N -l . -r newdat3.log

-c config file
-N turns off packet logging but still generates alerts
-l logs to the named directory
-r read packets from a file rather than live from the

network

04/21/14 37

Interesting Alerts
[**] [1:1913:7] RPC STATD UDP stat mon_name format string exploit attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
09/15-19:06:07.719989 210.114.220.46:654 -> 192.168.1.102:919
UDP TTL:47 TOS:0x0 ID:41890 IpLen:20 DgmLen:1104
Len: 1076
[Xref => http://www.securityfocus.com/bid/1480]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0666]

36 of the following in rapid succession

[**] [1:1529:7] FTP SITE overflow attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
09/16-15:55:52.552709 207.35.251.172:2243 -> 192.168.1.102:21
TCP TTL:48 TOS:0x0 ID:16651 IpLen:20 DgmLen:468 DF
AP Seq: 0xCF7869E4 Ack: 0xEBCD7EFE Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 237391708 29673193
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0838]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0770]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0755]

04/21/14 38

Interesting Alerts (cont)

[**] [1:1748:4] FTP command overflow attempt [**]
[Classification: Generic Protocol Command Decode] [Priority: 3]
09/16-15:55:59.485710 207.35.251.172:2243 -> 192.168.1.102:21
TCP TTL:48 TOS:0x0 ID:16786 IpLen:20 DgmLen:201 DF
AP Seq: 0xCF78AE1C Ack: 0xEBCE0EB9 Win: 0x7C70 TcpLen: 32
TCP Options (3) => NOP NOP TS: 237392403 29673724
[Xref => http://www.securityfocus.com/bid/4638]

[**] [1:498:4] ATTACK-RESPONSES id check returned root [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
09/16-15:56:01.742466 192.168.1.102:21 -> 207.35.251.172:2243
TCP TTL:64 TOS:0x10 ID:1730 IpLen:20 DgmLen:91 DF
AP Seq: 0xEBCE0EB9 Ack: 0xCF78AEB5 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 29674034 237392604

We should probably take a look at this particular tcp connection

04/21/14 39

Wireshark Analysis

• Load the packet capture file into Wireshark
• Change the time display
• Locate the ftp session in question
• Right click on the packet and choose “Follow

TCP Stream”
– Wireshark extracts only the packets involved in

this tcp connection and displays them in a separate
window

– You could save the conversation if you chose

04/21/14 40

Wireshark Analysis (cont)

• Whenever you follow a stream, Wireshark
applies a filter to your data
– Only packets that are part of the stream are

displayed
– Notice the large gap at the end of this particular

conversation
• What happened in the meantime?
• Select last packet before the gap
• Reset the display filter

04/21/14 41

Telnet Session

• A very revealing telnet session begins at
packet 711

• Follow the stream to extract it
– Select inbound or outbound packets to see one side

of the connection or the other

• From attacker we see
– Login as nobody followed by su to dns
– Then initiates an ftp session

• Next 3 slides: FTP review from Kurose & Ross

Application Layer 2-42

FTP: the file transfer protocol
file transfer

FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

 transfer file to/from remote host
 client/server model

 client: side that initiates transfer (either to/from remote)
 server: remote host

 ftp: RFC 959
 ftp server: port 21

Application Layer 2-43

FTP: separate control, data connections

• FTP client contacts FTP server
at port 21, using TCP

• client authorized over control
connection

• client browses remote
directory, sends commands
over control connection

• when server receives file
transfer command, server
opens 2nd TCP data connection
(for file) to client

• after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

 server opens another TCP
data connection to transfer
another file

 control connection: “out of
band”

 FTP server maintains
“state”: current directory,
earlier authentication

Application Layer 2-44

FTP commands, responses

sample commands:
• sent as ASCII text over

control channel
• USER username
• PASS password
• LIST return list of file in

current directory
• RETR filename

retrieves (gets) file
• STOR filename stores

(puts) file onto remote
host

sample return codes
• status code and phrase (as

in HTTP)
• 331 Username OK,
password required

• 125 data
connection
already open;
transfer starting

• 425 Can’t open
data connection

• 452 Error writing
file

04/21/14 45

Ftp Session

• FTPs to teleport.go.ro
• User/Pass: teleport/gunoierul
• Downloads

– Zer0.tar.gz
– copy.tar.gz
– ooty.tar.gz

• We can recover each of these files from the
packet captures

04/21/14 46

FTP File Recovery

• FTP is a two channel protocol
– Command channel – port 21

• This channel remains open for the duration of the
session

– Data channel – port 20
• A new data stream is created for each data transfer

• Sort packets by protocol
• Filter display by port

– tcp.port == 20

04/21/14 47

FTP File Recovery

• Chose a packet in an FTP-DATA connection
– Follow the stream and save

• In the main window select the last packet in
the stream before resetting the filter
– This helps you start your search for the next stream

of interest

04/21/14 48

Examine File Contents

• One all of the files have been saved you can
examine them

• Run file on them
• Extract their contents
• Determine what they do

	Section: Network Evidence Collection
	Slide 2
	Classes of Data
	Full Content Data
	Full Content Collection
	Session Data
	Alert Data
	Statistical Data
	tcpdump
	tcpdump Usage 1
	tcpdump Usage 2
	tcpdump Usage 3
	tcpdump For Headers
	Monitoring Considerations
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Section: Network Data Analysis
	Wireshark Basics 1
	Wireshark Screen Shot 1
	Wireshark Screen Shot 2
	Wireshark Screen Shot 3
	Wireshark Basics 2
	Wireshark Basics 3
	Wireshark Time Display
	Data Correlation
	Slide 33
	Demo: Honeynet Scan 19
	Snort Alerts
	Re-Running Snort
	Interesting Alerts 1
	Interesting Alerts 2
	Wireshark Analysis 1
	Wireshark Analysis 2
	Telnet Session
	FTP: the file transfer protocol
	FTP: separate control, data connections
	FTP commands, responses
	Ftp Session
	FTP File Recovery 1
	FTP File Recovery 2
	Examine File Contents

