
Network Evidence Collection

04/21/14 2

Motivation: Heartbleed

• In the news, Heartbleed “Leaves no trace”
– This means it leaves no trace on the server
– The traffic itself contains evidence

• We want to know:
– Was anyone attacked?
– Were we, specifically, attacked?
– By whom?
– What did we lose?
– This is a classic forensics problem.

04/21/14 3

Classes of Data

• Full Content
– Every byte of every packet

• Session Data
– End point information
– Who talked to who, when and how

• Alert Data
– Triggered based on predefined event criteria

• Statistical Data
– Averages of type, time, quantity, etc
– CS4558: Traffic Analysis

04/21/14 4

Full Content Data

• When to collect?
– Pre-incident

• Requires proper planning
• Large storage requirement
• Guaranteed coverage of entire event

– Unless encryption in use
– Post-incident

• Intent is to observe incident related activity

04/21/14 5

Full Content Collection

• Hardware
– Hubs

• Traffic passed to all ports
• Performance penalty – don't really make these any

more, especially at high speeds

– TAPS (layer 1)
• Dedicated copying of packets

– Inline device
• Bridging devices (Ex: Linux box with 2 ethernet ports)

– SPAN ports
• Specialized ports on commercial switches

04/21/14 6

Session Data Tools

• Argus
– http://www.qosient.com/argus/

• Tcptrace
– http://www.tcptrace.org/

• Tcpflow – session rebuilding
– http://afflib.org/software/tcpflow

• Chaosreader – session rebuilding
– http://www.brendangregg.com/chaosreader.html

• Wireshark
– http://www.wireshark.org

http://www.qosient.com/argus/
http://www.qosient.com/argus/
http://www.qosient.com/argus/
http://www.tcptrace.org/
http://www.tcptrace.org/
http://www.tcptrace.org/
http://afflib.org/software/tcpflow
http://www.brendangregg.com/chaosreader.html
http://www.wireshark.org/
http://www.wireshark.org/

04/21/14 7

Alert Data

• Generally NIDS (network intrusion detection
system) alerts
– Snort http://www.snort.org

• Trigger on any part of packet
• Can also save full content
• Can rerun old packets

• Familiarize yourself with you NIDS’ logging
capabilities

http://www.snort.org/
http://www.snort.org/

04/21/14 8

Statistical Data

• Tcpdstat
– http://staff.washington.edu/dittrich/talks/core02/

tools/tools.html
– Summaries of tcpdump capture files

• Wireshark
– Also generates statistics

http://staff.washington.edu/dittrich/talks/core02/

04/21/14 9

Packet Capture: tcpdump

• Open source packet sniffing tool
– http://www.tcpdump.org
– Same people offer libpcap

• Packet capture library
– On Windows you need WinDump/WinPcap

• http://www.winpcap.org/

• By default, prints a short summary of each
received packet

http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.winpcap.org/
http://www.winpcap.org/
http://www.winpcap.org/

04/21/14 10

tcpdump Usage

• Dumps output to console (stdout)
• For session data

tcpdump –i eth0
-i <interface>

• Output numeric ip/port values with –nn switch
tcpdump –nn –i eth0

• Change snaplen (amount of packet captured) with –s
-s 1514 max size of an Ethernet frame
-s 0 Causes capture of entire packet

04/21/14 11

tcpdump Usage (ii)

• Full content monitoring
– Set snaplen to grab entire packet
– Write packets to a capture file

-w <filename>
tcpdump –s 0 –i eth0 –w dump_10_28_03.cap

– No need for –nn switch as raw packet binary data
is being recorded

04/21/14 12

tcpdump Usage (iii)

• tcpdump understands command line packet
filtering rules
– Used to build Berkeley Packet Filter (bpf) rules

• Use rules to restrict content to traffic of
interest for example
– host 131.120.14.2

• Remember you will need to sort through all of
the collected data

04/21/14 13

tcpdump For Headers

• By default tcpdump only examines the first 68
bytes of a packet
– The amount of data actually grabbed is called the

snaplen
– 68 byte is sufficient to grab

• Ethernet header – 14 bytes
• IP header – 20 bytes
• TCP header – 20 bytes
• 14 extra bytes which may be tcp/ip options or

application layer data

04/21/14 14

Monitoring Considerations

• Monitoring machine should be able to see
desired traffic
– Consider network architecture

• Monitoring machine should be invisible to the
network
– Can’t be seen by other users
– Has no IP or the null IP 0.0.0.0
– Consider cutting transmit wire in network cable
– Are you doing name resolution? Is this good?

04/21/14 15

Monitoring Considerations (2)

• Are you getting all the packets?
– How much traffic is on the network
– “Bursty” nature of some transmissions
– How fast can you read from your NIC?

• Kernel dropping packets?
• “packets ``dropped by kernel'' (this is the number of packets that were

dropped, due to a lack of buffer space, by the packet capture mechanism in
the OS on which tcpdump is running, if the OS reports that information to
applications; if not, it will be reported as 0).” – tcpdump man page

• Buffer size? Tcpdump -B

04/21/14 16

Case Study: Heartbleed

04/21/14 17

Potential Damage

• 64 KB of encrypted data
– User passwords, content
– The server's private keys (very bad)

• Google / Paypal:
– We were affected, but don't bother changing your

password.
– Is this irresponsible?
– What does it imply?
– The bug has been around for 2 years...

04/21/14 18

How does it work?

• Classic unchecked array bounds error:
• http://xkcd.com/1354/

04/21/14 19

Transport Layer Security Basics (1)

Graphics courtesy of the Washington Post

04/21/14 20

Transport Layer Security Basics (2)

http://www.washingtonpost.com/news/morning-mix/wp-
content/uploads/sites/21/2014/04/howsslworks.jpg

04/21/14 21

TLS Heartbeat Protocol (1)

• Purpose: keep connection alive
– Avoid cost of a new handshake
– Avoid recalculating MTU

• Defined in RFC 6520
– https://tools.ietf.org/html/rfc6520
– Two message types:

• Request and response

https://tools.ietf.org/html/rfc6520

04/21/14 22

Heartbeat Request/Response

struct {
HeartbeatMessageType type; // 1 or 2; 1 byte

uint16 payload_length; // 2 bytes

opaque payload[HeartbeatMessage.payload_length];

opaque padding[padding_length];

} HeartbeatMessage;

• Max length of payload is 214 bytes (16KB)

• Why so big?

04/21/14 23

Heartbeat Request/Response (2)

• “If the payload_length of a received HeartbeatMessage
is too large, the received HeartbeatMessage MUST be
discarded silently.” – RFC 6520

• Does OpenSSL meet this requirement?

• Actual code before / after patch:

https://github.com/openssl/openssl/commit/96db9023b
881d7cd9f379b0c154650d6c108e9a3#diff-2

Network Data Analysis

04/21/14 25

Wireshark Basics

• Popular tool for traffic collection and analysis
– Open source
– GUI
– Can do both capture and analysis, “live” or “dead”

• Save to File
– Equivalent to
tcpdump –i eth0 –s 0 –w dumpfile

• Load from file
– Load saved capture files generated by Wireshark or

tcpdump

– Any file in pcap save format

04/21/14 26

04/21/14 27

04/21/14 28

04/21/14 29

Wireshark Basics (cont)

• Filtering capability
– One of the best features
– Capture filters use tcpdump style syntax
– Display filters use Wireshark syntax

• Gui expression builder available
• Can greatly reduce amount of displayed data

tcp.port == 23 //telnet traffic

04/21/14 30

Wireshark Basics (cont)

• TCP Stream Following
– Rebuild an entire TCP connection
– Display exact client/server communication

sequence (data only in display window)
– Break out client side or server side comms

separately
– Save data to disk for further analysis

04/21/14 31

Wireshark Time Display

Use menu to change
time display format

Alert from previous
snort slide

04/21/14 32

Data Correlation

• Data from one sensor points to data from
another sensor

• Example
– IDS data contains timestamps
– Use to find specific packets
– System time should match across systems

04/21/14 33

Demo: Honeynet Scan 19

04/21/14 34

Demo: Honeynet Scan 19

• http://www.honeynet.org/scans/scan19
• Packet captures

– Which vulnerability did the intruder exploit?
– What ways, and in what order, did the intruder use to

connect and run commands on the system?
– How did the intruder try to hide his edits from the MAC

times?
– The intruder downloaded rootkits, what were they called?
– Recover the rootkits from the snort binary capture
– What does the rootkit do to hide the presence of the

attacker on the system?

http://www.honeynet.org/scans/scan19

04/21/14 35

Example Snort Alert

[Xref => arachnids 442]
[**] [1:1282:1] RPC EXPLOIT statdx [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
03/15-17:21:29.303241 211.185.125.124:791 -> 172.16.1.108:931
UDP TTL:43 TOS:0x0 ID:30708 IpLen:20 DgmLen:1104
Len: 1084

[Xref => arachnids 442]
[**] [1:498:3] ATTACK RESPONSES id check returned root [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
03/15-17:24:27.552084 172.16.1.108:39168 -> 211.185.125.124:4450
TCP TTL:63 TOS:0x0 ID:79 IpLen:20 DgmLen:76 DF
AP Seq: 0x59606376 Ack: 0x9C6D2C13 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 2897138 23696979

IDS database

Priority Level

Alert time Summary

Source IP:port Dest IP:port[GID:SID:Rev ID]

(Snort's ID numbers)

04/21/14 36

Re-Running Snort

• Snort can be run against a packet capture file
just as easily as it can run in real time

snort -c /etc/snort/snort.conf -N -l . -r newdat3.log

-c config file
-N turns off packet logging but still generates alerts
-l logs to the named directory
-r read packets from a file rather than live from the

network

04/21/14 37

Interesting Alerts
[**] [1:1913:7] RPC STATD UDP stat mon_name format string exploit attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
09/15-19:06:07.719989 210.114.220.46:654 -> 192.168.1.102:919
UDP TTL:47 TOS:0x0 ID:41890 IpLen:20 DgmLen:1104
Len: 1076
[Xref => http://www.securityfocus.com/bid/1480]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0666]

36 of the following in rapid succession

[**] [1:1529:7] FTP SITE overflow attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
09/16-15:55:52.552709 207.35.251.172:2243 -> 192.168.1.102:21
TCP TTL:48 TOS:0x0 ID:16651 IpLen:20 DgmLen:468 DF
AP Seq: 0xCF7869E4 Ack: 0xEBCD7EFE Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 237391708 29673193
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0838]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0770]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0755]

04/21/14 38

Interesting Alerts (cont)

[**] [1:1748:4] FTP command overflow attempt [**]
[Classification: Generic Protocol Command Decode] [Priority: 3]
09/16-15:55:59.485710 207.35.251.172:2243 -> 192.168.1.102:21
TCP TTL:48 TOS:0x0 ID:16786 IpLen:20 DgmLen:201 DF
AP Seq: 0xCF78AE1C Ack: 0xEBCE0EB9 Win: 0x7C70 TcpLen: 32
TCP Options (3) => NOP NOP TS: 237392403 29673724
[Xref => http://www.securityfocus.com/bid/4638]

[**] [1:498:4] ATTACK-RESPONSES id check returned root [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
09/16-15:56:01.742466 192.168.1.102:21 -> 207.35.251.172:2243
TCP TTL:64 TOS:0x10 ID:1730 IpLen:20 DgmLen:91 DF
AP Seq: 0xEBCE0EB9 Ack: 0xCF78AEB5 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 29674034 237392604

We should probably take a look at this particular tcp connection

04/21/14 39

Wireshark Analysis

• Load the packet capture file into Wireshark
• Change the time display
• Locate the ftp session in question
• Right click on the packet and choose “Follow

TCP Stream”
– Wireshark extracts only the packets involved in

this tcp connection and displays them in a separate
window

– You could save the conversation if you chose

04/21/14 40

Wireshark Analysis (cont)

• Whenever you follow a stream, Wireshark
applies a filter to your data
– Only packets that are part of the stream are

displayed
– Notice the large gap at the end of this particular

conversation
• What happened in the meantime?
• Select last packet before the gap
• Reset the display filter

04/21/14 41

Telnet Session

• A very revealing telnet session begins at
packet 711

• Follow the stream to extract it
– Select inbound or outbound packets to see one side

of the connection or the other

• From attacker we see
– Login as nobody followed by su to dns
– Then initiates an ftp session

• Next 3 slides: FTP review from Kurose & Ross

Application Layer 2-42

FTP: the file transfer protocol
file transfer

FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

 transfer file to/from remote host
 client/server model

 client: side that initiates transfer (either to/from remote)
 server: remote host

 ftp: RFC 959
 ftp server: port 21

Application Layer 2-43

FTP: separate control, data connections

• FTP client contacts FTP server
at port 21, using TCP

• client authorized over control
connection

• client browses remote
directory, sends commands
over control connection

• when server receives file
transfer command, server
opens 2nd TCP data connection
(for file) to client

• after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

 server opens another TCP
data connection to transfer
another file

 control connection: “out of
band”

 FTP server maintains
“state”: current directory,
earlier authentication

Application Layer 2-44

FTP commands, responses

sample commands:
• sent as ASCII text over

control channel
• USER username
• PASS password
• LIST return list of file in

current directory
• RETR filename

retrieves (gets) file
• STOR filename stores

(puts) file onto remote
host

sample return codes
• status code and phrase (as

in HTTP)
• 331 Username OK,
password required

• 125 data
connection
already open;
transfer starting

• 425 Can’t open
data connection

• 452 Error writing
file

04/21/14 45

Ftp Session

• FTPs to teleport.go.ro
• User/Pass: teleport/gunoierul
• Downloads

– Zer0.tar.gz
– copy.tar.gz
– ooty.tar.gz

• We can recover each of these files from the
packet captures

04/21/14 46

FTP File Recovery

• FTP is a two channel protocol
– Command channel – port 21

• This channel remains open for the duration of the
session

– Data channel – port 20
• A new data stream is created for each data transfer

• Sort packets by protocol
• Filter display by port

– tcp.port == 20

04/21/14 47

FTP File Recovery

• Chose a packet in an FTP-DATA connection
– Follow the stream and save

• In the main window select the last packet in
the stream before resetting the filter
– This helps you start your search for the next stream

of interest

04/21/14 48

Examine File Contents

• One all of the files have been saved you can
examine them

• Run file on them
• Extract their contents
• Determine what they do

	Section: Network Evidence Collection
	Slide 2
	Classes of Data
	Full Content Data
	Full Content Collection
	Session Data
	Alert Data
	Statistical Data
	tcpdump
	tcpdump Usage 1
	tcpdump Usage 2
	tcpdump Usage 3
	tcpdump For Headers
	Monitoring Considerations
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Section: Network Data Analysis
	Wireshark Basics 1
	Wireshark Screen Shot 1
	Wireshark Screen Shot 2
	Wireshark Screen Shot 3
	Wireshark Basics 2
	Wireshark Basics 3
	Wireshark Time Display
	Data Correlation
	Slide 33
	Demo: Honeynet Scan 19
	Snort Alerts
	Re-Running Snort
	Interesting Alerts 1
	Interesting Alerts 2
	Wireshark Analysis 1
	Wireshark Analysis 2
	Telnet Session
	FTP: the file transfer protocol
	FTP: separate control, data connections
	FTP commands, responses
	Ftp Session
	FTP File Recovery 1
	FTP File Recovery 2
	Examine File Contents

