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The Radar Equation 
This is a summary from Chapter 2 in [12]. Now the we have the simple form of the radar equation, we notice that it expresses 
the maximum radar range in terms of source and target parameters: 
P ·G·A ·1 Rmax=t e 4 
(7.1) 
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(4⇡)2Smin Here we have: 
• Pt = Transmitted power • G = Antenna gain • Ae = Antenna effective aperture • = Radar cross section • Smin = Minimum detectable signal 
7.1 Minimum Detectable Signal 
The minimum radar signal that we an detect is called the Minimum Detectable Signal, Smin. There is a fine balance between signal and noise in the radar return signal. If we set the gain threshold too high, we can miss detecting a target, on the other hand if the gain threshold is too low, we clutter our return with false alarms. Refer to 7.1 for a visual representation of what we mean by this. 
It is quite obvious that A is a valid target, B is marginal and C is lost, in the noise, below the threshold. 
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Figure 7.1: The Minimum Detectable Signal, [12] 7.2 Receiver Noise 
Noise at the receiver will interfere with the our ability to see that target. It is not possible to operate in a perfectly noise free environment and it is a fact of life that we will have to deal with. The question, then, is how do we account for noise in the radar equation? We will need some type of model the will reflect properly in our understanding of the Minimum Detectable Signal, Smin. 
Even if there were no external noise factors, we will still have to contend with ther- mal noise in the electronic components of the receiver. We call this thermal noise the Johnson Noise. This type of noise is proportional to the temperature of the electronic components that have resistance (they all do) and the bandwidth of the radar receiver. Mathematically we would write: 
nthermal =kTBn Here k is defined as Boltzmann’s constant (k = 1.38 ⇥ 1023 J ). We measure 
deg 
the temperature T in Kelvin. For the purposes of this course, we can get the Bandwidth (Bn) by determining the 
3-db bandwidth of the receiver. This is calculated by looking at the half power (3-db down) mark of Maximum Value. Please refer to Figure 7.2. 
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Figure 7.2: Bandwidth 
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It does not matter, for this discussion, where the noise comes from; it could be internal or external. To get at the Total Noise at the output of the receiver we will multiply the Thermal Noise Power by a Noise Figure; Fn. We define this as: 
Fn= N0 kT0BnGa 
N0 is defined as the noise output of the receiver and Ga is called the Available Gain. We assume that T0 = 290 K. 
Another way to write the equation for the Noise Figure is to consider this to be a measure of the degradation of the Signal-to-Noise ratio as the signal passes through the receiver. We write this as: 
Fn = Si/Ni S0/N0 
We can rearrange this and, assuming the minimum detectable signal Smin = Si, we get: 
Smin = kT0BnFn ✓ S0 ◆ (7.2) N0 min 
We now have a relationship for Smin that takes into account our understanding of noise in terms of a signal to noise ratio S0 that we can substitute this into equation 7.1 to get: N0 
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Rm4 ax = PtGAe (4⇡)2kT0BnFn(S0/N0)min 
7.3 Probability Density Functions 
(7.3) 
[image: ]
To help us analyze the detection of signals in noise, we all consider the probability density function. We look at four examples as shown in Figure 7.3. 
We will restrict our analysis to the Gaussian Distribution, part C in the figure. 
p 22 ⇢(x) = 1 e (xx0 )2 . This function has already been normalized. 
2⇡2 
Problem 
Given the above equation, can you get < x >, < x2 > and ? 
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Figure 7.3: Probability Density Functions. (a) Uniform, (b) Gaussian, (c) Rayleigh (voltage) and (d) Rayleigh (Power), [12] 
7.4 Signal to Noise Ratio 
With these tools in hand, we are ready to apply our knowledge of Noise Theory to get 
a Probability of Detection, Pd without exceeding a desired Probability of False Alarm, 
Pfa. If the noise entering has a Gaussian Probability Density Function of 
1 
[image: ]
v2 e2 0 
R R2 ⇢(R)= e20 
0 
⇢(v)=p and the output is 
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2⇡ 0 
[image: ] [image: ]
(R is the amplitude of the filter output, mean square value of the noise voltage.) 
0 is the variance, otherwise known as the Then the probability that noise voltage will fall between V1 and V2 is: 
Z V2 R R2 P(V1<R<V2)= e 2 0dR (7.4) 
V1 0 Additionally, let’s calculate the probability the noise voltage will exceed some 
Threshold Voltage VT : 
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Z 1 R R2 P(VT<R<1)= e2 0dR=Pfa (7.5) 
VT 0 
[image: ] [image: ] 
7.5. SAMPLECALCULATION 107 and the solution is: 
P(V <R<1)=e✓VT2◆=P (7.6) T fa 
A Comment About Variance 
We should remember that the variance is calculated as such: 
Variance=2 =<x2 ><x>2 Or for our problem: 
Variance= 0 =<v2 ><v>2 Now if you look at Figure 7.4 you can see that on average the mean < v > noise 
voltage is zero. This means that < v >2 is zero. Therefore: 0 =< v2 > 
This is the mean square voltage of the noise signal. 
7.5 Sample Calculation 
When the signal voltage exceeds VT then we conclude we have detected a target. On the other hand of the Noise Voltage exceeds VT then we have a false alarm. Please refer to Figure 7.4. 
Figure 7.4: False Alarms Due To Noise, [12] From the diagram, we can deduce that the False Alarm Time Tf a is given by: 
1 XN Tfa = N Tk 
k=1 
[image: ]
20 
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Here we see that Tk is the time between crossings of the threshold VT . We can define Pfa in a different way when we think of it as a ratio of the duration of time above the threshold to the total time it could have been below the threshold. 
P =PNk=1tk =<tk>av = 1 fa PNk=1Tk <Tk >av TfaB 
If we equate equations 7.6 and 7.7 we can solve for Tfa: 
if 
(7.7) 
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1 VT2 Tfa = B e 2 0 
(7.8) The ratio h VT2 i is called the Voltage Threshold to Noise Ratio and we use this 
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20 ratio to help us determine the proper Threshold Voltage VT to tune in the false alarm probability. A plot of this equation is shown in Figure 7.5. 
Figure 7.5: Threshold To Noise, [12] 
Let’s assume, for a moment, that we are looking at a bandwidth Bn = 1 Mhz. Let us also determine that we can live with an average false-alarm time of 15 minutes. 
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7.6. INTERNALANDEXTERNALNOISE 109 Equation 7.7 tells us that the probability of a false alarm is 1.11 ⇥ 109 . With this 
knowledge we can enter Figure 7.5 and determine that:  VT2 ⇡ 13.2db 
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20 and then from equation 7.6 we see that the Threshold Voltage needs to be about 6.4 
times the RMS noise level to get our desired result. 
7.6 Internal and External Noise 
Let’s assume we not only have internal noise but we introduce an external source of noise in the form to a sine wave at Amplitude A. Now the probability density function is now modified: 
R R2+A2 ✓RA◆ ⇢(R)= e 2 0 I0 (7.9) 
0 I0 is a modified Bessel Function of Zero order. In fact this function can be expanded 
as follows: 
I0(Z)⇡ pez ✓1+ 1 +...◆ 2⇡Z 8z 
The Probability of Detection is then: 
Z 1 R R2+A2 ✓RA◆ Pd = e 2 0 I0 dR (7.10) 
VT0 0 
This integral cannot be solved analytically ... but we can use numerical techniques that are beyond the scope of this discussion. But what we can do is to plot the Proba- bility of Density functions for just Noise and then for Noise plus signal. 
When we select a threshold value then we can deduce probability of detection and probability false alarm. With a threshold voltage set to 2.5, see Figure 7.6, the crosshatched area would represent Probability of Detection and the double crosshatched area would represent the probability of false alarm. 
The radar designer sets the system requirements for Tfa and Pd. Then, the Pfa is calculated and a desired Pd is determined. Both of these are used in Figure 7.7 to get the required designed Signal to Noise ratio for those system requirements. This S/N is the signal to noise ratio the we use in the equation for Smin in equation 7.2. 
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Figure 7.6: Noise compared to Signal-plus-Noise, This Illustrates the Process of Threshold Detection [12] 
Figure 7.7: Probability of Detection as a Function of Signal-to-Noise Ratio for a Sine Wave Source [12] 
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7.7. INTEGRATIONOFRADARPULSES 111 7.7 Integration of Radar Pulses 
Up to now all of our mathematics is based on the return from a single radar pulse. But, it is not uncommon to get multiple returns from the target and this fact will help us with our numbers. We can put a value on the number of pulses returned from the target as follows: 
nB = ✓bfp = ✓bfp ✓ ̇ 6!m 
where 
• ✓b is the antenna beam width in degrees, 
• fp is the pulse repetition frequency in Hz, 
• ✓ ̇ is the scanning rate in deg/s, and s 
(7.11) 
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s 
• !m is the antenna scan rate in rpm. When we consider multiple returns, we call the result Radar Pulse Integration Im- 
provement and we modify the radar equation as shown. 4 PtGAenEi(n) 
Rmax = (4⇡)2kT0BnFn S (7.12) N1 
[image: ] [image: ]
S/N is found from Figure 7.7 and nEi(n) is found from Figure 7.8. 
Ei(n) is called the Efficiency of Post-detection Integration and is defined as the ratio of the value of the signal-to-noise ratio of a single pulse to that of an integrated pulse as shown. 
Ei(n) = (S/N)1 (7.13) (S/N)n 
7.8 Target Radar Cross Section 
Now we look at the topic of radar cross section. First you will note that the concept of radar cross section is, in some manner, a fiction about how much power from the target we will receive. To start, simple theory will get us in the right direction. We can think of it as a ratio of reflected to incident power densities: 
[image: ]
P r / ⌦ Pi/4⇡ 
2 E r 2 = lim 4⇡R (7.14) 
= • Pr is the power reflected toward the source per unit solid angle 
[image: ] [image: ]
R!1 Ei 
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Figure 7.8: Number of Pulses Integrated [12] 
• ⌦ is the Unit Solid Angle • Pi is the incident power density • Er is the reflected Electric Field strength • Ei is the incident Electric Field strength on the target • R is the distance between the radar and the target 
[image: ]
To do this rigorously we would need to solve Maxwell’s equations at the boundary of very complex targets. So we begin by assuming the spherical chicken and consider a target with spherical symmetry with radius r = a and incident wavelength . The results are shown in Figure 7.9. 
At the left side of the diagram, we have the circumference of the target as much smaller that the wavelength, in fact for very small circumference targets the radar cross section per unit area is very small. This is called the Rayleigh region. At the far right hand side of the graph, the circumference of the the target is much bigger than the wavelength, resulting in radar cross sections approaching 1, this is the optical region. In the Mie Resonance region, the radar cross section shows oscillatory response that is a function of wavelength. You can see resonant mode response in the Mie region. 
Here is an example of a cylindrical rod shape, where the problem can still be solved analytically. Figure 7.10 shows the RCS for a Thin Rod and compares against the calculated value. 
Since that mathematics gets quite tough for complicated shapes, a good approach is to simply get the Radar Cross Section experimentally on range. Figure 7.11 shows a composite display that compares various target geometries. 
7.8. TARGETRADARCROSSSECTION 113 
Figure 7.9: RCS of the Sphere[12] 
Figure 7.10: RCS of a Thin Rod[12] 
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Figure 7.11: Composite RCS for Various Target Geometries[12] 
Here are sample RCS figures from actual targets as measured on a range see Figures 7.12 and 7.13. 
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Figure 7.12: RCS for Aircraft[12] 
7.9. TRANSMITTERPOWER 115 
Figure 7.13: Composite RCS for Ship[12] 7.9 Transmitter Power 
The power term Pt in the radar equation 7.1 is referred to as the Peak Power. But, we need to be a little careful here because in reality it is an average power of the frequency cycle during the transmit cycle. But this still is not the average power that is of interest to us. We define the average power as: 
Pave = Pt⌧ = Pt⌧fp (7.15) Tp 
[image: ] [image: ]
Once again Pt is the peak power, ⌧ is the pulse width and Tp is the pulse repetition period such that the pulse repetition frequency is simply fp = 1 . Now we can write 
[image: ]
Tp the Radar Equation in terms of this defined average transmit power: 
Rm4 ax = PaveGAenEi(n) (7.16) (4⇡)2kT0Fn(Bn⌧)(S/N)1fp 
Here we notice that our radar equation has become more sophisticated and hope- fully more accurate. 
7.10 Antenna Parameters 
The two aspects of the radar equation that can be related to the antenna are the Gain G and the Effective Aperture Ae. We can think of the Power Gain of the antenna as the ratio of the power radiated per unit solid angle in azimuth and elevation to the power accepted by the antenna from its source per 4⇡ steradian. 
G(✓, ) = P⌦(✓,) (7.17) Pr /4⇡ 
[image: ] [image: ] 
116 CHAPTER7. THERADAREQUATION ⌦ is a unit solid angle in azimuth, ✓ and elevation, . With this in mind we can 
determine that the theoretical maximum gain of the antenna as it relates to the Aperture: 
G = 4⇡⇢A (7.18) 2 
Here ⇢ is the antenna efficiency and is the wavelength of the radiated energy. 7.11 System Losses 
Finally we need to account for losses in the signal due to losses in the system. These can include but are not limited to: 
· Plumbing Losses: These are losses of the signal in the transmission lines from the source to the antenna; Waveguides come to mind. These losses are typically measured in fractions of a db per 100 foot of transmission line.  
· Beam-shape Losses: Here some of the return pulses are lost, and not integrated due to the peculiarities of of the shape of the real beam in the ether. It is in some sense a loss in integration.  
· Limiting Loss: Limiting losses are seen in the conversion of the signal in the conversion to video display ... a CRT for example.  
· Collapsing Loss: Sometimes we amplify noise with the signal, this changes S/N and we call this a collapsing loss.  
· Operator Loss: Here the operator is just not that good. We account for this in this parameter.  
· Field Degradation: The radar operates differently in the field than in a pristine range or lab.  
· Other: Other losses not accounted for when experienced in an operational envi- ronment.  As a term of art we can sum up these into a loss factor that we will call Ls. This factor is larger than unity and is included in the denominator of the Radar Equation. As the system losses get large, the performance of the Radar System is diminished.  
[image: ] 
7.12. THEIMPROVEDRADAREQUATION 117 7.12 The Improved Radar Equation 
Now that we have considered many of the factors the effect the performance of the radar system, we are ready to state the Radar Equation with more confidence in its prediction of reality. 
Rm4 ax = PavGA⇢anEi(n) (7.19) (4⇡)2kT0Fn(B⌧)fp(S/N)1Ls 
As a review, lets define the terms in the equation: • Rmax= maximum radar range in meters • G = antenna gain • A = antenna aperture, m2 
• ⇢a = antenna efficiency • n = number of hits integrated • Ei(n) = integration efficiency (Less than Unity) • Ls = system losses (greater then unity) • = radar cross section m2 • Fn = noise figure • k = Boltzmann’s consant = 1.38 ⇥ 1038 J/deg • T0 = standard temperature = 290 k • B = receiver bandwidth • ⌧ = pulse width, s • fp = pulse repetition frequency, Hz • (S/N )1 = signal-to-noise ratio (single hit detection) 
7.13 Problem 
1. Given that the Bandwidth of your radar is Bn = 10khz, and that you choose a Tf a of 1 hour and assume the T = 290K with an antenna gain Ga = 6db:  (a) What is the S/N you will need for a Pd of 0.95? (b) What will be the minimum detectable signal Smin if Fn = 0.1db? (c) What is the probability of false alarm Pfa?  
2. Tell me how Bandwidth is Determined?  
[image: ] 
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