SWDIV-HDBK-7 (Rev. 1)
1 November 2002

SOFTWARE METRICS PROGRAM
HANDBOOK

DEPARTMENT OF THE NAVY
COMMANDER
NAVAL AIR SYSTEMS COMAND
47123 Buse Road
Patuxent River, MD 20620

SOFTWARE METRICS PROGRAM HANDBOOK

FOREWORD

This handbook was created to provide an introduction to the collection and use of software
management measurements & metrics. It isintended as a supplement and to provide detailed guidance
for the requirements of reference (a) NAVAIR INSTRUCTION 5234.5 NAVAL AIR SYSTEMS
COMMAND METRICS FOR SOFTWARE INTENSIVE PROGRAMS. It isdso intended to be
compatible and compliant with reference (b) IEEE/EIA 12207 The Software Life Cycle Process that
has replaced MIL-STD-498 and DOD-STD-2167 as the DOD standard for the Software Life Cycle
Deveopment Process. Specific guidance in this document is dso intended to be compliant with and
supplement reference (C) Practical Software Measurement (PSM). PSM is an implementation of both
the CMM I (Capabiility Maturity Modd Integrated) Measurement requirements and with reference (d)
I|SO/IEC 15939, Software Engineering - Software Measurement Process. Reference () is strongly
recommended to those interested in gaining a more detailed and comprehensive understanding of al
agpects of implementing and establishing a Software M easurement Program which is more than can be
covered within the scope of this document. Used together with other software development best
practices, an effective software metrics program provides essentid ingght into the program’s satusin
achieving its performance, cost and schedule requirements.

“When you can measure what you are speaking about and express it
in numbers, you know something about it; but when you can not
expressit in numbers, your knowledge is of a meager and
unsatisfactory kind: it may be the beginning of knowledge, but you
have scarcely, in your thoughts, advanced to the stage of science.”

Lord Kelvin (3 May 1883)

For copies or comments the following media are available:

By mall, contact: NAVAIR (41F000D)
Software Resource Center
Knox Rd, Build 1494
ChinaLake, CA 93555-6100

By telephone (voice), use: Software Resource Center, (760)939-7086, DSN 437-7086
By FAX (TELEX), use: Software Resource Center, (760)939-0150, DSN 437-0150
By Emall: NWA41P3R@navair.navy.mil
To contact the author use; Rick Holcomb

holcombra@navair.navy.mil

(301)342-2450, DSN 342-2450

SOFTWARE METRICS PROGRAM HANDBOOK

TABLE OF CONTENTS
1. OVERVIEW - METRICS PROGRAM. ..ottt tee st 1-1
11 10 [o (o IO 1-1
12 REFEI BINCES ...ttt bbbt £ £ e bbb ettt 1-1
13 BLIC= 1011 g oo TSP ST TSP 1-2
14 INTOrMELION NBBOS ...ttt ea e st b bbbttt bes 1-2
15 Metrics I nterrelationships; 8 COMMON FramMENOK ... ssesessesessssessssesssesssseeaes 1-3
16 US2 Of MELFICS & MEASUI BIMENTS........cuieiricrierreiet e bbb 1-5
2. METRICS et e st s sab e e ebe e s bb e e s be e e sne e e nneeenanes 2-1
21 FNEE OOUCEION .ottt bbb bbbt 2-1
22 L= o 1T = 0= £ T
221 PUIDOSE. ...t bbb bbb bbb bbb bbb bbbk bbb bbbk bbb bbbt b bt
222 Description
223 DALA CONECLION. ... ettt bbbt bbb bbbt
2231 SOUNCE ...etereaeeeer et e et s et s e s e bR AR E e e R E e e s
2232 Frequency........ccovenne.
224 Requirements Metrics
2241 REQUITEMENES QUEANTITYceceeveiecececireseeietsess ettt sessss e ss et s s s nss st esesnsnssssesnsnssaens 2-4
22411 PUIPOSE......cuiiicrs s
22412 Description
22413 SRSand SRD Requirements Quantity AnalysiS EXampleccovervevcennencseseses s 2-4
2242 Requirements Stability........cccovvereeerenrnesereseressseesessssessesesseeens
22421 PUIPOSE......cuiiicrs s
22422 [D=STox 1] o] o oSS OTTT
22423 ANAIYSIS .
22424 Requirements Stability Chart Analysis Example.........
2243 Requirements Test Coverage and Tests Completed
22431 PUIPOSE......cuiiicrs s
22432 [D=STox 1] o] o oSS OTTT
22433 ANAYSIS .
22434 Requirement Test Coverage Chart ANalysisS EXaMPIecocceeievceinenenesssesss e sessessssssssenenns 2-9
225 Requirements Earned Value Management (EVM) [SSUES.........ccccvveverinnenesennessssssesssssessessssesssssssseens 2-10
226 Requirements Measurement & MetricS REFErENCES........covveeeeerrescse st seesenseens 2-11
2.3 Sl Z bR AR R AR ARt
231 Purpose
232 DELA COIECLION. ...ttt bbb bbbt 2-12
2321 SOUNCE ...ttt E e R £ E AR R et s e
2322 Frequency
2323 SIZE AITDULES ...ttt bbbt 2-12

SOFTWARE METRICS PROGRAM HANDBOOK

233 SIZE MELTICS ..ottt bbbttt
2331 Source Lines of Code (SLOC)
23311 Description

23312 Purpose..........
23313 Description....
G T I S N o PR

23315 Rules of Thumb
23316 SLOC Implementation Chart Analysis Example
23317 SLOC EVM ISSUES.....couriurirnireereiieisstsstssisstssssesssssesesss st sttt sesss st essesssssassnsssssssssns
2332 FUNCLION POINES (FP) ...ttt sss s st na st snsssnnnnnsnsns
23321 Description
23322 ANAIYSIS iRt A et E e g e e et e s
23323 FPEVM ISSUESeuiiriireineinieire ettt st bt
234 Sizing Measurements & MetriCS REFEIENCEScvcvricerrecer st es

24 S = 111 o OO
241 PUIPOSE......oiiteittene et
1S o o 11 o U
243 Data COlECLION. ...
2431 SOUMCE ...t
2432 FrEQUENCY ..ottt
2433 FOrMEL(S)..eueeeerrrerreeeerrerenseetresessessesesss s sssssessessssssssesssssesssnens
244 StAffiNG MELIICS ..o
2441 Personnel and Staff HOUFS ...
24411
24412
24413
24414
24415 Personnel and Staff Hours Chart AnalysisS EXamMPle.......ccevecceniseceseses e sssessessssssseenns 2-23
24416 StAfING EVM ISSUES.....ccueiccectrsiree ettt ssas sttt sn st essssnsnssnen 2-25
24417 Staff Measurement and MetriCS REFEIENCES ..ot 2-25

25
251
252
253
254

2541 Source.......o.....
2542 Frequency........
255 Quality Metrics
2551 Software Problem Reports- Status
25511
25512
25513
25514
25515 Software Problem Report Status Chart AnalysisS EXamMPIeccvveeeerereeenvensseenesessessesessesnees 2-29
2552 Software Problem Reports- Age
25521 PUIPOSE......cuiiicrs s
25522 31210] o] 1 oo 1R
25523 ANAIYSIS iRt A et e et n e a et e s
25524 Software Problem Reports Age Chart Example
2553 Software Problem REPOMS - PHOMLYccccueieccieririsesesesie st sesssssssesss st ssssssssssssssssesnenes
25531 PUMPOSE. ..ottt bbb bbb bbb bbb bbb bbb bbb bbbt bbbttt
25532 31210] o] 1 oo 1R

SOFTWARE METRICS PROGRAM HANDBOOK

BTG TG TR A o F- | 2 PR 2-33
25534 Software Problem Reports Priority Chart Analysis EXample........coceveveeeenvenececnenenseesesessesnens 2-33
2554 Software Problem Reports— Predicted Versus Actual
2554.1 PUMPOSE.....ctiiiiie bbb bbb bbb bbb bbb bbb bbbk bbbt bbbttt
25542 31210] o] 1 o o 1T
25543 ANAIYSIS oAt e A en et e s
25544 Software Problem Reports- Predicted versus Actual Chart Analysis Example........cccocoeeeeunne. 2-35
2555 McCabe's CyclomatiC COMPIEXITY.......ccverrererieireririesesesssssesessessse st ssessssssesesssssessssssssessssssssessessanseses
25551 PUMPOSE. ...ttt bbb bbb bbb bbb bbb bbbk bbbt bbbttt
25552 31210] o] 1 o o 1T
25553 ANAIYSIS .ttt
25554 McCabe's Cyclomatic Complexity Chart Analysis Example
256 /= 0 OO
25611 PUMPOSE. ...ttt bbb bbb bbb bbb bbb bbbk bbbt bbbttt
256.1.2 31210] o] 1 o o 1T
256.13 ANAYSIS .
256.14 Maturity Chart Anaysis EXample......coovveenvneccneneneeninnnen,
257 QUElILY & EVM ISSUES.......ceeeeereierieiriresesesesesssetsesessssssssessssssssesssssssens
258 QUEIITY REFEIENCESececeeeecietsi sttt ae s s e b s e et ee s sn st en s ansnsn s

26 L= o) OO
26.1 PUIDOSE. ...ttt
262 1S o o1] PR
263 DELA COECLION......veeteetreei ettt sttt

2631 SOUNCE ...ttt R R E AR e e s n s
2632 Frequency........c.......
264 Capacity Metrics
2641 Computer Resource Utilization (CRU) USBQE........ccueereererresisissessssssssessssssssessssssssssssssssssssssessenes
26411 PUIPOSE.....cctiiiiiiesis bbbt
26412 Description
26413 ANAIYSIS .t
26414 CRU Utilization Chart ANaySISEXAMPIEc.ccuviviceerrereerress vttt ssssssssesesses
265 Capacity ULiliZation EVM ISSUES........ccueeireeeierisssie s tsssesssssssesss s sssssesssssssssssssssssessssssssssssssssesssnes
266 Capacity ULilization REFEIENCES.......cvvireireieerisese sttt sss st ssssssssnsnsnesen

271 PUIDOSE. ...ttt
272 1S o o1] PR
273 Data Collection
2731 SOUNCE ...ttt R R E AR e e s n s
2732 L =0 (1= 0y TN
2733 0] 0 () PR
274 SCREAUIE IMBLIICS ..ottt
2741 CSU Design, Code, and Testing Tracking
27411 PUMPOSE.....ctiiiii bbb bbb bbb bbb bbb bbb bbb bbbk bbb bbbttt
27412 31210] o] 1 oo 1R
27413 ANAYSIS .t
27414 CSU Design, Code, and Test Chart Analysis Example
2742 Major Milestone TraCkingccceveveeerereeeenresssesesessessesesssneens
27421 PUMPOSE. ..ottt bbb bbb bbb bbb bbb bbb bbb bbbt bbbttt
27422 31210] o] 1 oo 1R
27423 ANAIYSIS . e
27424 Magor Milestones Chart Example......cccccvvevvvnveneceeneneeeninnens
275 SCHEAUIE EV M ISSUES ..ottt bbbttt

SOFTWARE METRICS PROGRAM HANDBOOK

276 SCHEAUIE REFEIEINCES ..ottt bbb bbbt 2-54
3. CONTRACT APPLICATION ..ottt eee sttt 3-1
31 Contract & RFP WOrding REFEN BNCES ...ttt 3-1
LIST OF TABLES
TABLE 2-1. Edablishment of Initidd REQUIFEMENES.ccvevverieriieieeeee s 2-3
LIST OF FIGURES
FIGURE 1-1. SOfWEAIE IMEINICS.veveieiieeiieiee ettt sttt s snenne s 1-4
FIGURE 1-2. Metrics Categories and RE@IONSNIPS.covveeverieniieieeierieeesee e 1-5
FIGURE 2-1. Reguirements Trends for System Requirements Specification, and Software
RequirementS DeSCIiptiON # 1.ccueveeieeeieeeesieeie s s 2-6
FIGURE 2-2.System Reguirements Specification: Added, Changed and Ddleted............cocvveneenene 2-8
FIGURE 2-3. Test Procedures and TestS COMPIELE.coverierienieeiie e 2-10
FIGURE 2-4. Software Size Implementation Trend, SLOC.ccooveveveeveereeieceese e seeseeenens 2-17
FIGURE 2-5. Requirements Implementation Trend for New SLOC..........cccooceeienieieninneenenene 2-18
FIGURE 2-6. Personngl and Saff HOUIS.......c.coiiiiiiiieniceeeeee e 2-25
FIGURE 2-7. Software Problem REPOIM STBUS.c.eeivererrieriereesiee e s 2-30
FIGURE 2-8 Software Problem REPOM AQE.ovveverieriirierieieeesie et 2-32
FIGURE 2-9. Software Problem RePOIt PHIOMTIES.c.coeeieriiniesieeie et 2-34
FIGURE 2-10. Predicted VErsuS ACIUAl SPRS........ccoiiiiiiiinieeeie e 2-36
FIGURE 2-11. Computer Software Unit Cyclomatic COMPIEXILY.........ceerreerierernierienie e 2-38
FIGURE 2-12. Software Release MaUurity METICc.coeeveeeieceeseecie e 2-40
FIGURE 2-13. Computer ReSOUICES ULIHZBION........cevereeeiieeieseesiee e 2-44
FIGURE 2-14. CSU DeSign COMPIELION.......cceiiiriirieriesieseseeie ettt 2-49
FIGURE 2-15. CSU Code & Unit Test (CUT) COMPIELION.........coieriierierieenienienee e 2-50
FIGURE 2-16. CSUs Completed INtegration TESE.........cccueveeieieeseeieseesieesie e see e eeeseee e e 2-51
FIGURE 2-17. OVEAl SCREAUIE.oooeeeeeeee ettt sttt 2-53

SOFTWARE METRICS PROGRAM HANDBOOK

LIST OF APPENDIXES
APPENDIX A. Acronym and AbDreviations.............coviii i A-1
APPENDIX B. Additional Reference Material...........c.ovveiiiiiiii e B-1
APPENDIX C. Comparison of Software Life Cycle Standards.............cocovvviiiiiiininnnns C-1
APPENDIX D. Earned Value Management OVENVIEW..........ovvuiiriie i ceneaene e D-1

SOFTWARE METRICS PROGRAM HANDBOOK

THISPAGE INTENTIONALLY LEFT BLANK

Vi

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

1. OVERVIEW - METRICS PROGRAM

1.1 INTRODUCTION
According to the 2000 study by the Standish Group:
» 23% of software development projects fail.

* 49% were challenged. In the challenged group schedules over ran on average by 63%,
cost over ran by 45%, and only 67% of the originally desired functionality was provided.

* Only 28% were successful.

Other studies show sSmilar or worse results. Imagine what Americawould look likeif the congtruction
industry had asimilar successrate. One can assume that al of these programs when initiated expected
to be successful. What happened? In most cases the falure to implement an effective metrics program
was at least part of the reason. Attempting to execute a software development, or any other engineering
development effort, without empirica, quantitative data upon which to judge the progress and status of
the program is akin to attempting to fly an aircraft without any instruments or navigetion systems. It may
be acceptable for a smal software development or ultra-light aircraft, but it is not agood ideafor alarge
software development or trying to fly a 747 across the Pacific Ocean.

A measurement program is the essentid first step to any effort to implement software process
improvement efforts seeking to achieve greater performance at alower cost and on a shorter schedule.
Without an effective metrics program, how can it be determined if these process improvements are
actudly having a desrable effect on the program? The answer isthat it can't; in fact it may be having
just the opposite effect.

Many program managers use the high cost of ametrics program, often cited as 2 - 5% of program
costs as areason for not implementing such aprogram. However, without a metrics program, these
managers have no meansto either develop aredlistic cost, schedule, or performance godsfor the
program, or to identify deviations from their plans early enough to take meaningful corrective action.
Thus, without a metrics program, these program managers realy have no ideahow much their program
will cost or what is the current status of the program is. Its not a matter of being able to afford a metrics
program; alarge software development can't afford not to use metrics.

1.2 REFERENCES

Top leve requirements for use of metrics can be found in the following documents. In the event of a
conflict between this handbook and formal guidance, the forma guidance will dways take precedence.

(8 NAVAIRINSTRUCTION 5234.5 NAVAL AIR SYSTEMS COMMAND METRICS FOR
SOFTWARE INTENSIVE PROGRAMS.

(b) IEEE/EIA 12207 Software Life Cycle Process

! Practical Software & Systems Measurement Objective Information for Decision Makers, PSM Overview Version 5.0.

1-1

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

(c) Practicd Software Measurement, Objective Information for Decison Makers, John McGarry,
David Card, Cheryl Jones, Beth Layman, Elizabeth Clark, Joseph Dean, Fred Hall, Addison
Wedey 2002.

(d) 1SOMEC 15939, Software Engineering - Software Measurement Process
(e) Software Size Measurement: A Framework for Counting Source Statements CMU/SEI-92-TR-20
ESC-TR-92-020

(f) Practicd Software Measurement, a Foundation for Objective Program Management, version 3.1a,
Department of Defense Implementation Guide, PSM Addendum, 17 April 1998. Available at
WWW.PSMSC.COM.

(g) Capability Maturity Modd® Integration (CMMI™) for Systems Engineering, Software Engineering,
Integrated Product and Process Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS,
V1.1) CMU/SEI-2002-TR-012 ESC-TR-2002-012. Measurement and Analysis Process Area

1.3 TERMINOLOGY
This handbook makes a subtle differentiation between software measures and software metrics:

* Measurements are the (raw) data elements. They are directly observable quantities that
can be counted, such as lines of code, labor hours, and labor months. Under PSM,
reference (c), these arereferred to as “ Base Measures” .

* Asusedinthismanual, a Metric is considered some measure or combination of measures
that reflect some aspect of an itemin which one has an interest. For example, the
growth of the size of a software module over time might be one metric of interest to the
manager of a software development effort. Metric asit isused hereisthe sameasa
Derived Measure and/or an Indicator as referred to in PSM, reference (c).

Terminology in this handbook is consstent with Reference (a), (b) and () as much as possible.
Appendix C provides a cross reference of terminology used by Reference (b) IEEE/EIA 12207 to
older DoD Software Life Cycle Processes such as MIL-STD-498 and DOD STD-2167A.

1.4 INFORMATION NEEDS

Metrics and Measurements must be selected based on the information needs of the program. There are
essentialy three types of Information Needs:

v Program Objectives and Commitments — Operational Requirements Document (ORD) Key
Performance Parameters (KPPs), critical specification requirements, fiscal and schedule
constraints, product acceptance criteria, external agreements and interface requirements,
efc..

v Process |mprovement Goals — measur e effectiveness of process improvement efforts.

v" Problems — areas of concern that a project is currently experiencing or isrelatively certain to
experience.

1-2

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

v" Risks—areas of concern that could occur, but are not certain to occur.

v" Lack of Information — areas of concern where the available information is inadequate to
reliably predict the project impact.

The software metrics program must collect and andyze measurements and metrics that will provide
vighility into program Information Needs. Metrics which do not provide such ingght are usdessand a
waste of effort to collect. The PSM methodology is based on this concept.

At aminimum, al programs should assume they will experience problemsin the areas of performance,
cost and schedule. The measurements set found in this handbook provide examples and suggestions of
the minimum core measLrements and metrics needed for vishility into and mitigation of any problems
arisng in the areas performance, cost and schedule.

v Additional measurements and metrics, not discussed in this handbook, may be required to
provide visibility into other program information needs.

v Asthe program information needs change over the development life cycle, so to must the
measurements and metrics change in order to continue to provide insight into current and
pertinent issues for the program.

v The buyer (Government Program Office and/or Software Support Activities (SSAs)) and the
developer (Industry, SSAs, or other source) must work closely to identify the current
information needs of the program and ensure that only measurements and metrics are
collected which provide insight into those information needs.

1.5 METRICS INTERRELATIONSHIPS; A COMMON FRAMEWORK

For the purposes of this handbook, metrics are grouped into seven categories asfollows. (1)
Requirements, (2) Size, (3) Staffing, (4) Capacity, (5) Quality, (6) Schedule and (7) Cost.

Figure 1- 1 depicts the seven categories and the associated software metrics in each category.

1-3

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

/

'METRICS
| | |

Staffing Capacity Cost

Requirements

Schedule

- Personnel - CPU « Earned Value

- Number
. Test Coverage and - Staff Hours - Memory
Tests Completed - o

- Volatility
*SLOC New - Problem Reports » CSU Design, Code,
* SLOC Reused - Complexity and Build
* SLOC Modified . Maturity » CSCI Builds
* SLOC Deleted » Major Milestone
«COTS Tracking

* Earned Value

FIGURE 1-1. Software Metrics.

Figure 1-2 shows the relative rel ationship between the categories and associated metrics. Such
interrelationships exist between most metrics.

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

Each METRIC must be

NO SINGLE METRIC correlated with each other and
gives the whole picture analyzed to get an accurate
and complete picture

2. Size ; 3. Staffing
* SLOC New ¢ Personnel
* SLOC Reused Staff hours

1. Requirements /\ 4. Quality
* Number . * SPRs _
* Volatility Metric . Comp_lexny
* Test Coverage and Categ ory * Maturit
Test Completed
Trend
Analyses
\/ 5. Capacity
* CRU Usage

* Memory Usage
7. Cost 6. SCh_edUIe « /O Channel Usgae
— * CSU Design, Code and Test
* Earned Value « Software Builds
* Major Milestone Tracking

e Earned Value

FIGURE 1-2. Metrics Categories and Reationships.

1.6 USE OF METRICS & MEASUREMENTS

References (¢), (d) and (g) provides guidance for integrating the use of measurement and analysisinto
other project activities. Integrating measurement and anadysis into other activities can increase both the
accuracy and benefits of the selected measures.

Metrics & measurements can, and should, be tailored and collected in away that minimizes costs and
intrusions into the devel oper's normal software engineering practices. Where the developer has an
established sat of measurements, that set should be reviewed for suitability and should be used when
they meet the requirements of providing visihility into the software buyer’ s information needs.

M odifications and additions to the devel opers established measurement and metrics set should only be
required if the costs of these changes are judtified by the buyer’ s information needs. However, needed
measurements should aways be identified as a contract ddiverable.

Metrics & measurement requirements placed on the developer should aso be extended to the
deve oper's subcontractors performing software development. Congderation should be given to
Sandardizing measurement definitions and collection methods across dl software devel opment
subcontractors.

1-5

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

2. METRICS

2.1 INTRODUCTION

The following metrics are provided as examples and guidance in developing and implementing ametrics
program. Each of these metrics will provide vighility into different aspects of the software devel opment
process. The specific metricsin this section have been selected for discussion due to their ability to
provide ingght and visihbility into the three primary problem areas of any software development project:

1. Quadlity
2. Cost
3. Schedule

Note: The following measurements and metrics are intended as examples and guidance and
not as firm requirements on exactly what measurements & metrics must be collected
and analyzed. If the developer uses alternative measurements & metrics which meet
the buyer’ s information needs, than the developer’ s measurements & metrics should be
utilized in order to avoid the cost of perturbing the software development environment.
The developer should be forced to collect new measurements and metrics only when the
benefit of doing so outweighs the cost of not meeting the infor mation need.

2.2 REQUIREMENTS
2.2.1 Purpose

Requirements are the primary driver of the Sze, schedule, effort, and ultimately cost of a software
development effort. Requirements can change for a program in three ways.

1. New or added requirements. These will dways increase cost and schedule. The later they are
added into a program, the greater the cost and schedule increase will be due to rework required in
previoudy completed requirements documents, design documents, code and testing.

2. Dedeted requirements. These may result in decreases or increases in cost and schedule depending
on when they are deleted. The later they are deleted, the lessthe savings. At very late pointsin the
development, deletion will actudly increase cost due to the rework required to remove these
requirements from requirements documents, design documents, code and retesting.

3. Modified or changed requirements. These may increase or decrease the cost depending on the
change. The later in the development the change is made, the more likely that it will cause a cost
increase. Changes in requirements during later development phases will virtudly dways increase
cost and schedule due to rework of documents, code and retest. Even achangeresultingina
decrease in performance can result in cost and schedule increasesiif it is made late in the
development cycle.

The sources of software requirements changes are aso critical and can be divided into two categories.

2-1

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

1. User generated changesin requirements. Such changes will generdly require an Engineering
Change Proposal (ECP) and a subsequent modification to the contract with the developing agency.
Such changes are virtualy guaranteed to cause an increase in cost. Deletions, made early in the
development may result in cost reductions, but keep in mind that cost incurred prior to the deletion
of arequirement are sunk and will not be recovered by the deletion. Proposals for “no cost”
changes to software requirements should be treasted with extreme caution, especidly if they are
adding capability. Unless savings are being achieved via deletion of other functiondity, thereisno
such thing asa“no cost” change. It isessentia that users and resource sponsors understand the
impact on program, cost, schedule and other functiona requirements of demands for the
implementation of additiond functiondlity.

2. Changesin Software Requrements Description (SRD). The SRD expands higher-level sysems
requirements into detailed software requirements from which design, code and test can be
performed. The SRDs will be developed during the requirements andysis phase. Any changesto
user requirements will dso change the SRDs. The SRD requirements will dso changein later
development phasesif the requirements were incorrectly or inadequatdly defined. An inadequate
requirements analys's phase will result in more changes to software requirements during later
development phases. The later in the development cycle the change occurs, the higher the cost due
to increased rework. A mature software devel opment organization may be able to account for
these requirements changes in initid estimates based on historica data from previous projects. For
example: if the company knowsthat in the past it has experienced a 1% per month changein
requirements during development, it can take this into account in developing future estimates.

Higoricdly, software programs experience a 1% - 5% change in requirements per month from the
completion of the requirement andyss until the beginning of sysems integration testing. Many systems
continue these requirements changes during system testing, which is even more disruptive and costly.
The US average for both commercia and military software is gpproximately 2% 2 requirements change
per month between the requirements analysis and test phases. Thus, the average software development
effort will experience a 24% change in requirements per year during the design and coding phases.
Additiondly, defects caused by poorly defined and contradictory requirements make up approximeately
20% of dl requirements but more than 30% of the most intractable and difficult to repair . Tegting is
often ineffective in finding such requirements errors since the tests have been designed to determine if a
requirement was implemented, not to determine if the requirement itsdlf is correct.

Because of the impact requirements will have on the project’s cost, schedule and performance, it is
essentid that requirements be carefully tracked and managed. 1t is aso essentia that athorough,
complete and well thought out andysis of the systems requirements be done. Not only during the
software requirements andys's phase, but dso during the development of the Operational Requirements
Document (ORD), Mission Needs Statement (MNS) and System Requirements Specification (SRS).
Use of Joint Application Design (JAD) and Qudlity Function Deployment (QFD) have both been shown

2 Estimating Software Costs, T. Capers Jones, McGraw Hill, 1998, pp25, 40, 148, 193
% Estimating Software Costs, T. Capers Jones, McGraw Hill, 1998, pp423

2-2

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

to be highly effective in ensuring system and software requirements are well defined” and in reducing
subsequent requirements change rates.

2.2.2 Description

Software requirements will be tracked from the System Requirements Specification (SRS), and
Software Requirements Description (SRD) (or equivaent document if developed under a standard

other than reference (b) IEEE/EIA 12207). The number of requirement changes over the development
life cycle should aso be tracked for each of these documents. The number of requirements and changes
to requirements should be collected and reported for each Computer Software Configuration Item
(CClI) of each build.

2.2.3 Data Collection

Agreement by the developer on the question "What is arequrement?' iscritical. Are requirements only
delineated by the word "shdl"? Isthe statement "The developer shdl provide: (@) ..., (b) ..., and (¢) ..."
to be considered as one or three requirements? |If the specification states ... provide a display for
terrain following.", does an unspoken derived requirement to provide range circles for threet Surface-to-
Air Missles result?

2.2.3.1 Source

The deveoping agency should provide software requirement data as derived from the new or revised
SRS, or SRD.

2.2.3.2 Frequency

Theinitid number of requirements should be established at the milestone reviews as shown in Table 2-1.
The developer should provide monthly reports after initid vaues are established.

TABLE 2-1. Esablishment of Initid Requirements.

Sour ce Document Review Event

System Requirements Specification | System:-leve requirements milestone review —
(SRS Systemy/Subsystem Requirements Review

Software Requirements Description | Software-level requirements, milestone review - Software
(SRD) Requirements Review

Under the spird and incremental development methods, it is possible for the SystenVSubsystem
Reguirements Review and especidly the Software Requirements Review to occur more than once.
Such areview could be required for every software spird, increment or build in the program depending

* Estimating Software Costs, T. Capers Jones, McGraw Hill, 1998, pp426, 429

2-3

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

on how the program is structured. This being the case, requirements analyss cannot be viewed asit is
in awaterfal type development, as something that occurs soldly at the beginning of the development, but
as atask that overlgps with other phases for other spiras/increments/builds. Thus more indght into the
effectiveness of the requirements analysis on a software development will be achieved if requirements
changes are andyzed for the individud spirds/increments/builds. This dlows the andydsto determineif
thereisasgnificant amount of changes in requirements occurring following the requirements andysis
phase for anindividua spird/increment/build. 1f the requirements changes are viewed only astotasfor
al spirdsincrements/builds, it will be difficult or impossible to differentiate between expected
requirements growth during the planned requirements andys's phases, and growth in later development
phases due to inadequate up front andysis or lack of control of new user requirements.

2.24 RequirementsMetrics

2.2.4.1 Requirements Quantity
2.2.4.1.1 Purpose

It iscritica that a program have an accurate running account of the requirements of the system.
Changes in the number of requirements are a strong indicator that other changes will occur inthe
program, such as size, schedule, cost, capacity, etc.. Requirements drive every aspect of a software
development.

Note: The government should also have a requirements tracking metric in place for the
Operational Requirements Document (ORD), Mission Needs Satement (MNS) and other
government generated specifications.

2.2.4.1.2 Description

This metric shows the total number of requirementsin top-level documents, the System Requirements
Specification (SRS) and the derived requirements found in Software Requirements Description (SRD).
The requirements data for this metric come from the software developer. The requirements datais
graphed over time for the requirements found in the SRS, and each SRD.

Consideration: Therequirements at all levels of the system: ORD, MNS, SRS and SRD should be
tracked, traced, and modeled using automated tools (Doors, ReQuire, etc.). It would
not be unusual to have thousands or even tens of thousands of requirementsin a
program. These cannot be adequately monitored by hand, and automated tools are
therefore essential.

2.2.4.1.3 SRSand SRD Reguirements Quantity Analysis Example
Figure 2-1 shows a sample chart of requirements trends. Some of the programmatic issues brought to
light by thisexample are:

1. Noticethat during both the systems and software requirements analysis phase, the number of
requirements increases rapidly. Thisisto be expected since this is the period during which the
requirements making up the SRS and the SRD are being defined.

2-4

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

2. Notice that the Systems Requirements definition is running concurrently with the Software
Requirements definition between Feb & Jun at the beginning of the chart. Additionaly, most of the
systems level requirements are being defined after the Systems Requirements Review. Thislevd of
concurrency can lead to large numbers of errors and rework in the software reguirements since they
are being defined before most of the systems requirements they are derived from have been defined.
These errors can continue to cascade into later phases such as design and code, which will raise the
cost of rework much higher. Theleve of concurrency between systems and software requirements
definition shown hereis very risky and likely to cause large amounts of rework, which will have
severe impacts on the project’s cost and schedule.

3. It gppearsthat the software requirements analysis phase ends in gpproximately Jun. Notice how
total software requirements in Jun of about 660 continue to rise until Feb of the following year
where they reach gpproximately 750. This represents about a 15% tota increase or dightly less
than 2% amonth. This correspondsto US averages for software requirements changes. However,
notice the changes are continuing into Developmental Test (DT). Requirements changes, with the
associated rework involved will become more and more expensive as they occur later in the
program. |If the program had not planned for such increases over itslife cycle, one would expect an
even more rapid rise in cost to occur as these requirements continue to be added at later and later
points in the development. Increasesin SLOC and schedule dips associated with these
requirements increases should also be expected.

4. Notice that approximately 30 or 40 new systems requirements are added at the beginning of DT.
Thiswill have a ggnificant impact on cost and schedule for the program. Significant amounts of
requirements andys's, design, coding and testing rework will be required to implement these
requirements. Also notice that this abrupt increase does not cause a corresponding increasein
growth in the software requirements. This may indicate that most or al of these systems
requirements do not impact software, or it may indicate that the developer has not updated the
software requirements have not yet been updated. Adding system requirements late in the
development is extremely risky to a software development effort and islikdly to cause large
increases in cost and schedule,

5. When reviewing this metric chart, other metrics which should adso be reviewed are:

a. Size— Hasthe software size (SLOC, FP, etc.) increased as the number of requirements
increased? If not why not? A mature developer may have adjusted the Size estimate based on
alevd of requirement growth previoudy experienced. If thisisthe case, the developer should
be able to show how the adjustment was made and its historicd bass. Alternatively the Sze
and therefore the cost and schedule estimates may not have been updated to account for
requirements growth.

b. Schedule— It would be expected that new requirements would have a schedule impact. A
meature contractor may have planned for some predicted leve of requirements growth, which
could explain no change in schedue. Or as stated previoudy, maybe the devel oper is not
keeping up with the requirements changes.

c. Stafing— More requirements could require more steff.

2-5

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

d. Capacity — The more requirements, the more processing power, RAM and 10 could be
required to execute the code required to implement the requirements.

e. Cost — Expect cost to increase as the number of requirements incresse.

REQUIREMENTS TREND
SIZE - SRS and SRD # 1

SRD #1 == SRS Actual
800
700 —
600
R
E 500
Q
LIJ 400
R "
E 300
M
E
N 200
5 ,/(
S 100 >
0 . . : : .
c o = = > c S o o = > 3} c o = = > c
s ¢ 2 & & 3 5 2 & s 2 & s ¢ 2 2 £ 3
SysRR SWRR SDR DT OTRR oT

FIGURE 2-1. Requirements Trends for System Reguirements Specification, and Software
Requirements Description # 1.

2.2.4.2 Requirements Stability
2.2.4.2.1 Purpose

While total number of requirements can be used as a gross indicator of resource requirements,
monitoring rates of change is dso essentid. The Requirements Stability metric provides the detalls of
rates of change over the specified intervas. Even if total number of requirements stays condant,
requirements deletions, additions and modifications can drive cost and schedule higher.

2.2.4.2.2 Description

This metric shows the added, changed, and deleted requrementsin any particular document (i.e.,, SRS,
SRD) for a gpecified interval of time,

2-6

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

The requirements data for this metric come from the software developer, and are depicted in asmple
graph over time of the added, changed, and del eted requirements for individua documents.

Consideration: Agreement by the development group on the question "What isa
requirement?" iscritical. Arerequirements only delineated by "shall"? Is
the statement "The contractor shall: (a)..., (b)..., (c)..." onerequirement or
three requirements? If the specification says"...provide a display for terrain
following" for example, is an unspoken derived requirement to provide
range circles for threat Surface to Air Missile (SAM) sitesincluded as a
requirement?

2.2.4.2.3 Analyss

While aglobd picture can be obtained from the tota requirements informetion, the "devil isin the
detals' when requirements are changed, each change must be andyzed to understand the perturbations
on the total program resources.

Note: The program must consider establishing a committee to review all requirement
changes. The significance of this statement is that merely replacing one requirement
with another is no assurance that the resources required for the changed requirements
will remain constant.

2.2.4.2.4 Requirements Stability Chart Analysis Example
Figure 2-2 provides an example of arequirements stability metric. Notice the following:

1. After peaking in Jun, the total number of requirements decreases, than increases, and decreases
again. Keepinmind that dl of these changes will have impacts on the cost and schedule dong with
other metrics such assize.

2. Thetota number of requirements drops from approximately 260 in June to 200 by the end of the
program, about 23% total or alittle less than 2% per month when considered through the end of the
program.

3. However, when dl the changes and deletions are consdered over this twelve-month period we find
atota of dmost 400 changes, deletions and modifications to the requirements have been made.
Approximately 225 of these have occurred after the system entered DT. Thus, the actua change
rate for requirements on this program is 158%, or dmost 13% per month. We would expect large
cost and schedule overruns on this program due to the extremely high rate of requirements change.

4. Notice that the software requirements analys's phase gppears to have continued at least through
June, based on the steep increase in requirements up to that point. However, the Software
Requirements Review was done in April, when less than half of the requirements were defined.

5. We should be asking the following questions about this project:

a. Wha wasthe cause of the large number of requirements changes during DT?

2-7

Metrics SOFTWARE METRICS

PROGRAM HANDBOOK

6.

b. Did changing user requirements cause this? If so, the large number of modifications should have
resulted in acompletely revised budget and schedule for the program with OPEVAL delayed
until the associated rework could be completed.

c. Wasit caused by the developer not discovering until DT that they had misinterpreted virtualy dl
the requirements? Keep in mind, more changes have been made during DT than the tota
number of requirementsin the system, thus some of the requirements must have been changed
multiple times.

Why did earlier test phases not disclose this problem? Looking just a this metric, it is difficult to
determine just what went wrong with this project. Review of other metrics reating to test coverage
and quality may have shown that earlier testing was inadequate and that the system entered DT too
soon. It can aso be concluded from this Situation that the requirements andlys's phase for this
project was inadequate. The large number of requirements changes may have been driven by other
interfacing systems or user requirements. If thisis arisk, requirements changes from these outside
sources should be separately tracked and the and corrective action taken.

nH4HzmImMmu—cOmaD

REQUIREMENTS TREND
SRD # 1 REQUIREMENTS: ADDED, CHANGED, AND DELETED

== New Requirements Modified Requirements == Deleted Requirements ™= Total Requirements (New - Deleted)

300

- A

200

150

100 /
50
o . _ =m0 o
c o] = = > c S o o o
s & 2 2 & 3 5 2 g 9

> [9) c Q 5 = > c
8 & §8 § £ & & 3
SysRR SWRR SDR DT OTRR oT

FIGURE 2-2.Sysem Reguirements Specification: Added, Changed and Deleted.

2-8

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

2.2.4.3 Requirements Test Coverage and Tests Completed
2.2.4.3.1 Purpose

Each requirement should be testable and be tested. This metric tracks the progress in both developing
test procedures for the different test phases and successful test completion.

2.2.4.3.2 Description

The Requirements Test Coverage and Tests Completed metric shows the number of requirements for
which test procedures have been written and the number of requirements that have been tested
compared to the total number of requirements. Additiondly, it must include not only the actud rate at
which test cases are being developed and executed but how they compare to the planned rates for
developing and completing tests. Tests are not completed until they have been successfully passed.

2.2.4.3.3 Analyss

The program’ s software devel opment schedule should be used as the basis for the planned test case
development and the planned test case completion. This plan needs to be updated as the total number
of requirements requiring testing changes during development. A mature software developer would be
expected to dlow for some amount of requirements changes, deletions and additions based on historical
data from previous projects. If thisisnot done, it is virtudly certain that the project will not meset its test
schedule.

2.2.4.3.4 Requirement Test Coverage Chart Analyss Example

Figure 2-3 provides an example of the Test Coverage and Test Completed Metric. The sample shows
planned goals for test procedures developed and tested leading up to Software Qudlification Testing for
the softwareitemin SRD #1. A few questions and observations we can draw from this metric are;

1. Whiletherate a which test descriptions are being developed is less than planned, therate is
adequate so that the planned test completion schedule does not appear to be impacted. If we look
at May 02, we see that over 300 more test procedures are available, than are planned for execution
inthat month. It isunlikely that alack of test descriptionsis restricting the developer’ s ability to run
tests based on this data

2. Test completion islagging gpproximately a month behind the planned rate. Why?

a. Aremoretedsfailing than were dlowed for? Thiswould indicate aqudity problem. Qudity
metrics need to be investigated in this case.

b. It appearsthat testing started a month late. Why?

i) Perhaps the code was not yet ready for testing. The program schedule and size metrics
may help to determineif thisisthe case.

i) Perhaps there is a gaffing shortfal preventing testing execution. Check staffing metrics
to seeif thisisaposshility.

c. Isthe SQT testing on the project’s criticd path? Will this ddlay cause other dipsin the
schedule? Review the program’s project schedule to determine if thisis the case.

2-9

Metrics

SOFTWARE METRICS
PROGRAM HANDBOOK

3. Keepinmind that changes, deletions and additions to requirements will also impact the test
schedule. In our examplethisisnot anissue. If it was an issue, the following problems would arise.

Requirements

a

1600

1400

1200

1000

800

600

400

200

0

New and modified requirements will force additiona test procedures to be developed or
exigting procedures to be modified and executed. Modifications to requirements that have been
completed will require the modified test proceduresto be rerun. Other test procedures may
aso need to be rerun to ensure any changes to the code have not caused problems in other
aress.

Deleted requirements may necessitate the rerunning of test procedures to ensure the code
modifications have not caused problemsin other areas. The later the requirement is deleted, the
more retesting will be required.

Schedule and cost impacts are very likely. The later arequirement is added, deleted or
changed, the more rework in testing and other areas will be required to implement the
modification.
Test Procedures & Tests Completed
SRD #1

—=— Planned Test Procedures Developed Planned Test Procedures Completed

—¥— Actual Test Procedures Completed

——Total # Requirements
Actual test procedures Developed

LS

o //

Jan-02 Feb-02 Mar-02 Apr-02 May-02 Jun-02 Jul-02 Aug-02 Sep-02 Oct-02 Nov-02 Dec-02 Jan-03

FIGURE 2-3. Test Procedures and Tests Compl eted.

2.2.5 Reguirements Earned Value Management (EVM) I ssues

The primary objective of a software development from the customer’ s point of view isthe
implementation of the desired requirements within the planned cost and schedule. Thus, wherever

2-10

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

possible, earned value should be allocated based on the implementation of requirements’ for the
development phase in questior®. For example:

1. For the design phase, earned vaue credit should be taken when the design for arequirement is
completed. It doesn't matter how many pages of documentation have been produced if the design
isn't complete. Thus, taking earned vaue in the design phase based on levd of effort,
documentation produced, or some other metric does not necessarily reflect the actud status of the
effort.

2. Incode and unit test, earned va ue credit should be taken when the requirement has been coded,
passed peer review and unit tested. 1t doesn’t make any difference how much SLOC is produced if
it does't implement the requirements. Thus, basing earned vaue on SLOC or some other metric
will not necessarily accurately reflect the project satus. What isimportant isif the requirement has
been implemented.

3. During testing (other than unit testing), earned vaue should be taken when the code for a
requirement is successfully tested. Taking credit based on the number of test cases run will not
necessxily indicate if the requirements have been successfully tested.

If requirements are to be used as the basis for earned vaue, an effective method of tracking system
requirements through intermediary software requirement, design, code and test phases must be
implemented. Such traceability is essentid in any caseif it isto be determined which of the systems
requirements have actudly been implemented. This essentid traceability aso can be used to increase
the effectiveness of software earned vaue for the system.

2.2.6 Requirements Measurement & Metrics References

Further information on requirements measurements and metrics is available in Reference (c) “Practica
Software Measurement, Objective Information for Decison Makers’, pages 176 — 179.

2.3 SIzE
2.3.1 Purpose

Software size (SLOC, FP, etc.) isthe primary driver of total software development cost and schedule.
The software Sze estimates and the actud sze will be determined by the planned requirements and what
requirements were actudly implemented in the final product. Since software Sze estimates are often
very inaccurate during early phases of aproject, when its budget is being developed, errorsin the
software Sze, which in the vast mgjority of cases are too low, are the mgjor cause of cost and schedule
overruns. Because of itsimpact on cost and schedule, it is essentid to any program that the size be
tracked in order to spot indications of size growth and take corrective action as early in the program as

possible.

®“Practical Software Measurement, Performance-Based Earned Value”’
http://www.testablerequirements.com/Articles/solomon.htm

http://www.stsc.hill.af.mil/CrossT alk/2001/sep/solomon.pdf, CrossTalk, September 2001, Paul Solomon, Northrop
Grumman Corporation

® See Appendix D & http://www.acq.osd.mil/pm/ for further information on EVM implementation.

2-11

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

2.3.2 Data Coallection

2.3.2.1 Source

The software developer will be responsible for providing dl Sze esimates and actuds. Actud sze
should be taken from source code that has been compiled and is, preferably, under configuration

management.

2.3.2.2 Frequency

Report sze estimates monthly from contract award through completion of development and testing.
Report actud sze monthly from the time code is placed under configuration management until the
completion of system test.

2.3.2.3 SzeAttributes
Software size for estimates and actuds should be broken down based upon the following attributes:
1. New code — Size of new code. Generally the most expensive to develop. Often underestimated.

2. Reused Unmodified code — Size of code being reused unmodified. This code meets some dlocated
set of program requirements without modification. Still requires integration testing with new and
reused modified code to ensure deleted code did not cause any defects. Functiondity that can be
implemented with reused code is often overestimated. Additional new and modified codeisthan
required to make up the difference.

3. Reused Modified code — Size of code that is being modified prior to reuse. This code will consst
of modules, classes, functions, routines, Computer Software Units (CSU), Computer Software
Component (CSC) and CSCls, which must be modified to some extent to meet the program
requirement. The higher the percentage of code that must be modified, the more expengve the
modifications. In some Stuations, where the code is not well documented, poorly written and/or has
numerous defects, the cost of modifying the code can exceed the cost of developing it from scratch.
Thisis especidly true for code that was not origindly designed for reuse, or the development team is
unfamiliar with the code.

4. Deeted code— Size of code to be deleted prior to reuse. Thisis code that must be deleted from
code being reused since it meets no system requirements. Deletion of code can be very expensive,
Deetion requires the devel oper to determine what functionaity must be removed, determine what
code in what modules to delete and then test afterwards to determine if the deletion caused any
unexpected defects. For code not designed for reuse, is poorly designed, of low quality, and/or
poorly documented, deletion can be very difficult and expensve due to the effort involved in
determining what to delete and what associated modifications and new code are required to prevent
the deletions from causing defects.

5. Automaticaly Generated code — Size of code to be produced by automatic code generators. Even
though the source code is automaticaly generated, requirements analys's, design and testing must
dill be performed. Thus, the use of automatic code generators may diminate less than 20% of the

2-12

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

effort compared to manual generation. Automatic generation is generdly limited to very specific
areas such as use interface development. 1t will not eiminate al manua code generation.

6. Language in which the codeis developed. Useful for tracking performance and qudity in
developing software in various languages.

7. Spird/Build/Increment/Rdease in which the code is developed. Very useful for comparisons of the
amount of code actually developed ininitid spirds, builds, increments or rel eases as compared to
the estimates. If the actud code is sSgnificantly different than the estimates, the estimates for later,
spiras, builds, increments or releases must be updated aong with the cost and schedule.

8. CSCl or softwareitem in which the codeisincluded. Different components of code vary in
complexity. Breaking down the code between CSCls or software items helps to determine where
the estimates vary the mogt from the actuds. This dlows the targeting of resourcesto correct
problems in the specific modules that are having problems.

The eight previoudy identified code atributes dl take different amounts of effort to implement, develop
and/or integrate into the system. These different attributes should thus be broken out in order to identify
how changes can affect the cost and development schedule. Not only are initial Sze estimates often

low, but developers aso often underestimate the amount of new code required (the most expensive type
of code), while overestimating the amount of reused unchanged, reused modified and automatically
generated code (less expensive types of code). Thus, the total amount of code can Say relaively
constant, but if the amount of new code increases while reused and automaticaly generated decreases,
the cogt of the system and the schedule to complete will increase.

Tracking the different types of code aso dlows the amount of effort and time to implement, develop and
integrate the code to be tracked. This datais extremey vauable for use in verifying thet the developers
planned productivity is being achieved, for updating the estimate to reflect changesin requirements and
other metrics, and for providing the historical basis of actua productivity necessary to develop estimates
for future systems. See the discussion of saffing metrics for further information.

2.3.3 SizeMetrics

2.3.3.1 Sourcelinesof Code (SLOC)
2.3.3.1.1 Description

There are avariety of means by which SLOC can be counted. The two mgor methods are counting
physicad and logicd lines of code. Physical lines of code can be thought of as counting each individua
line (carriage return) while logical lines of code attempts to count only executable lines. The Software
Engineering Inditute (SEI) document entitled, Software Size Measurement: A Framework for Counting
Source Statements, reference (€), provides additiona guidance on the SEI methodology for counting
physical and logicd lines of code. Keep in mind that the counting details used by different software
development organizations vary. It istherefore essentid that the counting method used by the devel oper
be understood in order to compare software sizes from different organizations.

Code Counting Programs (CCPs) should be used if they exist for the software language used in the
development. Contact the Nava Air Sysem Command (NAVAIR) Software Engineering Division

2-13

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

(AIR-4.1.11) or SRC for information on available CCPs. Use of such CCPsisaso useful in ensuring a
meaningful comparison of gpplication Szes from different developers Snce it ensures the counts are
done in a congstent manner.

2.3.3.1.2 Purpose
To estimate CSCI and overdl program size.
2.3.3.1.3 Description

This metric shows the Sze of spirals/builds'rel eases/incrementsin both new, unmodified reused,
modified reused, deleted and automatically generated SLOC. A program will also want to develop
SLOC graphsfor individua CSCls and/or software items.

The data for the SLOC metric comes from the software devel oper, and should be shown for each build
of the software. Individua software items can also be tracked to provide detail.

Consideration: The question "What constitutes a Line Of Code?" must be clearly
defined for both the contractor and subcontractors for this
metric to have any meaning.

2.3.3.1.4 Analyss

In today's software development environment, spira development, multiple builds and incrementa
release methodologies are often used. Each spird, build or release builds on the functiondity and
developed in previous spirds, builds or releases. This means that successive spirdbuilds/rel eases will
contain the same code as their predecessors. Thus, the total cumulative size of the software isthe sze of
the last spira/build/release. As requirements for the project are changed, deleted and added, the
SLOC estimate must be updated.

2.3.3.1.5 Rulesaf Thumb

Maor variations in the Sze data could indicate:

1. problemsin the use, gppropriateness, or vaidity of the modd used to develop the estimates,
2. ingability in requirements, design, or coding,

3. problemsin understanding the system to be devel oped, and

4. anunredidic origind estimate for the system to be devel oped.

2.3.3.1.6 SLOC Implementation Chart Analyss Example

Figure 2-4 shows an example of a SLOC implementation metric chart. The planned lines on the chart
show the estimates for the different types of SLOC during the coding phase. Theinitia parts of the
planned lines show the expected rates at which the code will be developed, integrated or deleted during
this period. The actua lines show the amount of the different types of code actudly developed,
integrated or deleted during this phase. This easily alows a comparison of how the software
development is actualy proceeding in comparison to the program plan. In order to smplify this chart,

2-14

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

automatically generated code was not included. For our purposes we will show only actuas and the
initid estimate from the start of the code and unit test phase.

1.

3.

Notice that the plan calls for development to be completed by Jul 02 for al types of code.
However, it can be seen that the actua development effort continued to Nov 02 dueto a
combination of lower than expected productivity and higher than planned SLOC. This four-month
dip may or may not impact the overdl program schedule depending on whether the software
development is on the programs criticd path.

The actua new SLOC is consderably higher than the planned new SLOC. Why isthisthe case?

a. Wasthe origind estimate inaccurate? Look at the requirements metrics, if there have been no
changes in the requirements, or the amount of changesis not large enough to account for the
SLOC increase, than at least part of the problem was an inaccurate initid estimate.

b. Wastheincrease caused by additiona requirements? If the SLOC count has increased partidly
due to additiona requirements, than the customer mayhbe getting additiona functiondity in partia
compensation for the increased cost and schedule required for the increased SLOC.

c. Whilethe actual new, reused modified and deleted SLOC has increased, the amount of
unmodified reused SLOC has decreased. Thiswould seem to indicate that the amount of
requirements that could be implemented in reused code was overestimated and more new and
modified code was required as an dternative. This may adso be aresult of changesin
requirements that reduced the amount of code that could be reused. Review of requirements
metrics should give some indication if thiswas the case.

While it can be seen that the actud production rate for new code is less than planned, this metric
does not provide an indication thet the total amount of SLOC will increase beyond the planned level
prior to Jul 02. To determine if thiswould be the case, prior to Jul 02 other metrics must al'so be
evauated. Assume that we are taking earned val ue based on the implementation of requirements
during the software development phase, as discussed in section 2.2.5. Also assume that there are
no requirements changes. For the sake of this discussion, ignore the chart after Jul 02 in figure 2-4.
There are severd different dternatives a comparison of EVM and the SLOC metric could indicate;

a. What if the earned vaue indicated that the program was on or ahead on cost and schedule,
Cogt Performance Index (CPl) and Schedule Performance Index (SP1) are greater than or
equd to 1? Thiswould indicate that the requirements were being implemented at or faster than
the planned rate. The developer has overestimated the amount of code required to implement
requirements. Even though the code production rate is less than planned, the programis on or
ahead of schedule because of thisimplementation rate. The expected result would be that the
tota amount of new SLOC would be less than planned. Thisisan unlikely scenario Sncethe
amount of SLOC israrely overestimated. |f this Stuation does occur, the EVM should be
carefully reviewed to insure it is providing an accurate evauation of the status of the program.

b. If CPl isone and SPI isless than one, the project will be on cost behind schedule. SLOC
estimate should be close to planned. Cogt to implement requirements agrees with plan, but
implementation is dower than expected. This sounds like there may be staffing problems with
not enough people working on the effort.

2-15

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

c. CPl and SPI arelessthan one. Its costing more than expected to implement requirements and
itstaking longer than planned to do so. This sounds like the SLOC will probably increase,
athough the unfavorable CPI could also be caused by higher than expected labor rates.
Another possible gaffing problem? |sthe developer being forced to pay more than expected
for software developers? |Isthe schedule delay because enough qudified staff can’t be found?

d. CPl lessthan one, SPI equal to one. Project is on schedule, but cost to implement
requirementsis greater than expected. Again this could ether indicate that SLOC will increase
or that staffing costs are higher than expected, either due to a need for more people than
expected to get the work done, or higher labor rates than expected, possibly both.

4. Any method that seeksto predict if the amount of SLOC will increase beyond the planned level
must make a comparison of the actua amount of SLOC completed to the actud requirements
implemented. Thisiswhat the previous example usng EVM attemptsto do. Figure 2-5 shows
planned and actud implementation of the requirements to be implemented in the new code in Figure
2-4. For the purpose of our andysis, we will assume that it takes roughly the same amount of effort
to implement each software requirement. For detailed software requirements as documented in the
SRDsit should take gpproximately the same effort to implement individua requirements. SRD leve
requirements roughly correspond to Testable Requirements’.

a. Noticein Figure 2-4, that in Apr 02, gpproximately 71% of the planned SLOC has been
completed. If wereview Figure 2-5, we seethat in Apr 02, approximately 53% of software
requirements are implemented. Thiswould seem to indicate that the SLOC estimate istoo low
since it appears to be taking about a third more SLOC to implement a requirement than was
planned. We see smilar differences for the other months proceeding Jul 02 in Figure 2-4 & 2-
5. Thiswould seem to indicate that the fina SLOC would be gpproximately athird greater than
the planned new SLOC of 50,000.

b. If more than 71% of the planned software requirements had been implemented by Apr, this
would have indicated that the SLOC estimate was too high, since it was taking less code than
predicted to implement each requirement.

c. Keegpinmindin thered world thereislikely to be more than one reason, for SLOC growth;
low initid estimate, software requirements changes, systems requirements changes, €tc..

" Sizing Software Using Testable Requirements, http://www.testabl erequirements.com/

2-16

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

SLOC

80000

70000

60000

50000

40000

30000 4

20000

10000

0~

#

Software Size Implementation Trend
Source Lines of Code

==@=Planned New === Planned Reused Unmodified Planned Reused Modified Planned Deleted
== Actual New =@ Actual Reused Unmodified Actual Reused Modified === Actual Deleted

A A S T S e

FGURE 2-4. Software Size Implementation Trend, SLOC.

2-17

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

Requirements Implementation Trend for New SLOC

|+ Planned Requirements == Actual Requirements |

300

250 <

200

150

Requirements Implemented

100

50

0+ T

Jan-02 Feb-02 Mar-02 Apr-02 May-02 Jun-02 Jul-02 Aug-02 Sep-02 Oct-02 Nov-02 Dec-02 Jan-03

FIGURE 2-5. Requirements Implementation Trend for New SLOC

2-18

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

2.33.1.7 SLOC EVM Issues

One method of taking earned value credit is to use the amount of SLOC completed®. When using
SLOC for earned value, consder the following:

1. Using SLOC for earned vaueis only appropriate in the code and unit test phase.

2. SLOC edimates are often low and will tend to climb during development. Thiswill result in the CPI
and SPI being too high if alow SLOC edtimateis being used as the basis of earned value. SLOC
estimates must be updated at least monthly based on current data and earned value should be based
on the % of the current SLOC estimate that is complete.

3. Thedéfinition of when the code is completed must be established if SLOC isto be the basis of
earned vaue. Completion of peer reviews and/or unit test is often used as completion criteria.

2.3.3.2 Function Points (FP)
2.3.3.2.1 Description

Function Points are a software sizing metric based on the andlyss of the software requirements. A
function point is essentidly a standard unit of software functiondity. The function point counting rules
define how to determine how many of these units are in a specific software gpplication. The most
widdy utilized function point counting rules are those established by the International Function Point
Users Group (IFPUG), www.ifpug.org IFPUG provides multiple sources for training in function point
counting, certifies function point counters, and acts as a source for companies providing function point
counting services. Edtimation of software Sze usng SLOC requires extendve experience in the domain
of the gpplication to be developed adong with supporting historica data from similar applicationsto
support the estimate. FPs on the other hand rely on the use of trained function point counting expertsto
derive the FP size from the software requirements documents.

ItisESSENTIAL that the personnel performing the function point count have
received formal training in Function Point counting, and at least one member of
theteamisa CERTIFIED FUNCTION POINT SPECIALIST.

In cases where aSize etimate is needed, but the historical data and/or domain knowledge necessary to
perform a SLOC estimate is unavailable, or awell defined method of performing the SLOC estimateis
unavailable, FPs provide auseful dternative. SLOC estimates are often generated via an adhoc and
informa process with inadequate attention being paid to a careful analys's of the systems software
requirements and historica datafrom smilar sysems. Thisis one of the primary causes of the low
SLOC edtimates and resulting poor cost and schedule estimates many systems are plagued by.
Because FPs are based on arigoroudy defined process of counting rules, based on andysis of the
software requirements, FPs avoid the inaccuracies often caused by informal adhoc SLOC estimates.

While there are many advantagesto FPs, they are not acure al slver bullet for software sizing
problems. Aswith any software processit will take time and effort to adapt a software devel opment

8 See Appendix D & hitp://www.acq.osd.mil/pm/ for further information on EVM implementation.

2-19

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

environment to use FPs. If the organization’s current metrics are based on SLOC or some other size
metric, further effort will be required to caibrate or normalize this data to a FP szing methodology.

Function Point counting rules are based on an andysis of the software requirements to count the
following components of the software:

1. Internd Logicd Files (ILF) — A user identifiable group of logicdly related data or control
information maintained within the boundary of the gpplication.

2. Externd Interface Files (ELF) — A user identifiable group of logically related data or control
information referenced by the application, but maintained within the boundary of ancther application.

3. Externd Input (El) — An dementary transaction that processes data or control information that
comes from outside the gpplication boundary.

4. Externd Output (EO) — An dementary transaction that processes data or control information sent
outside the application boundary.

5. Externd Inquiry (EQ) — An dementary transaction that sends data or control information outside the
gpplication boundary without processing — a simple request/response or “fetch.”

For further information on counting rules, see the Function Point Counting Manua available &
www.ifpug.org.
2.3.3.2.2 Analysis

Once a count has been completed, andysis of FPsissmilar to andysisof SLOC. In adevelopment
consgting of multiple spirds, builds, releases or increments, each subsequent spirds/builds/releases will
be built upon the functiondity implemented in the predecessors. Changes, deletions and additions to
software reguirements will also require the function point count to be updated.

Charts of function point metricswill be smilar to that shown for SLOC in figure 2-4. The primary
differenceisthat the number of FPswill be less than SLOC, on average one FPis equivaent to
approximately 55 SLOC of C++°,

2.3.3.2.3 FP EVM Issues

FPs can a'so be used as a means of taking earned value™. Since FPs are closdly related to software
requirements, they can also be used to track earned vaue in al phases of the development after
software requirements analyss. Some issues to consider:

1. SinceaFPisadandard unit of software sze and functiondity, a sandard amount of earned vaue
and effort can be alocated to the completion of a FP.

2. Thetraceshility for the syslem must dso be able to trace the number of function pointsto different
parts of the design, coding and unit testing, and integration testing. Thisis necessary so as part of

°« Applied Software Measurement” pages 80— 92, Capers Jones, McGraw Hill, 1997
10 See Appendix D & http://www.acg.osd.mil/pmy/ for further information on EVM implementation.

2-20

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

the design is completed, or aunit of code is completed or atest procedure is completed, the
number of function points worth of earned vaue to be taken can be determined.

3. Function point counts must be updated as software requirements change otherwise Earned Vaue
based on them will be inaccurate.

2.3.4 Sizing Measurements & Metrics References

Further information on Sizing measurements and metricsis available in Reference (c) “Practica Software
Measurement, Objective Information for Decison Makers’, pages 173 — 176.

2.4 STAFFING
2.4.1 Purpose

The Staffing metrics shows the reationship of planned versus actua staff hours to develop the software.
Staff hours are tracked in the following software development phases; system leve requirements design,
software leve requirements analys's, preliminary design, detailed design, code and unit test, component
integration and test, program test, and system integration & test (software-to- software and software-to-
hardware integration). The metric tracks the developing agency's ability to maintain planned levels of
gaffing. The measure includes engineering and management personnd directly involved with activities
such as software system planning, requirements management & anays's, software design, code, test,
documentation, configuration management, quality assurance, etc..

2.4.2 Description

The gaff hours measure tracks hours expended by assigned software personnd and tracks the number
of planned and actua software personnd, the number of software personne losses, and the number of
personnel additions for each reporting period. The data shows planned and actua staff hours over the
development period. Regular and overtime hours should be reported separately. For current and future
months, estimated hours (regular and overtime) will be reported. Actua staff hours (regular and
overtime) should be reported for the previous months.

2.4.3 Data Collection

2.4.3.1 Source

The developing agency will provide saff hours datafor efforts associated with; system level
requirements design, software level requirements andysis, preliminary design, detailed design, code and
unit test, component integration and test, program test, and system integration & test (software-to-
software and software-to-hardware integration).

2.4.3.2 Frequency

An estimated gtaff hours profile should be presented at the inception of the project and should be
updated monthly theresfter. The update will include previous month actuas and revised estimates (if

required).

2-21

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

2.4.3.3 Format(s)
Idedlly, staffing should be broken down by the following attributes:

1. Labor categories: management, systems engineer, requirements anays, coder, tester, configuration
management, quality assurance, documentation, etc.. Labor costs vary sgnificantly for the different
categories. Thisinformation is helpful in developing and updating cost estimates. Why are costs 0
high even though we have the planned number of people? Maybe the labor mix is different than
planned; there may be more higher priced labor categories than originaly planned.

2. Software development phases. system level requirements design, software level requirements
andysdis, priminary design, detailed desgn, code and unit test, component integration and test,
program test, and system integration & test, etc.. Thisisussful when atempting to determine why
there are cost or schedule overruns occurring during one of these phases. |s gaffing lower than
planned? If gaffing is at plan perhaps the assumed productivity for the phaseistoo high.

3. Spirds, builds, releases or increments, CSCls. Many modern programs have overlapping spirds,
builds, rdleases or increments al going on a once. Bresking staffing down adlowsit to be
determined whether problems for that specific spird, build, increment/release are saffing related.

4. Typesof code: new, reused unmodified, reused modified, deleted, and automatically generated.
The productivity for dl these types of code will vary. If the mix of the different types of code being
developed changes, than the staffing plan needs to change to accommodate it. If the amount of new
code increases, while the amount of reused code increases, the overdl result will be anincreasein
gaffing snce new code will have alower productivity. Bresking down staff by the types of code
they work on makes it easer to determine the impact of changesin the types of code to be
developed.

These breakdowns dlow the analysis of the metrics to determine what the causes of any issuesare. The
more thisinformation isrolled up, the less vighility and ability management will have to determine the
cause of the problem. Breskdowns at thislevd are dso extremely useful in updating program costs and
schedules to account for the current Situation.

2.4.4 Staffing Metrics

2.4.4.1 Personnd and Staff Hours
2.4.4.1.1 Purpose

The number of personnd on the program provides information about one of the primary program
resources. Staff hour information is used in conjunction with personnel to give amore precise "fed" for
the human resources being expended on the program development.

2.4.4.1.2 Description

Software personnel in use on the program development can be graphed over time. Actud data should
be compared to the developing agency's planned usage of personnd. Separate charts should be made
for each subcontractor.

2-22

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

Consideration: The question "Who is a software person?" needs to be clearly
defined to assure proper head counts are taken into account.

24.4.1.3 Analyss

Programs "in troubl€" must be monitored carefully to ensure that compensatory time, weekends and
holidays, and unpaid hours do not artificialy boost productivity. Whereas these techniques may work
for short periods, heroic schedules over the long term are doomed to falure.

While a"head count” for personnd is provided in the previous metric, it is aso important to know how
much each "head" is contributing to the development effort.

Overtime with each "head" working 55-hour weeks cannot be expected to yield positive results after
long periods.

Studies have shown that while moderate schedule pressure actualy boosts productivity, increasing the
schedule pressure results in reduced productivity due to burnout, higher defect rates and increased
rework.

The reviewer should take into account "redity” information. While each 52-week year has 2080 hours,
(assuming 40 hour per weeks), when sickness, holidays, and vacation are taken into account, the
government shows that only 1761 regular hours [roughly] are available for actud work in a productive
man year; 16% is dready los.

Consideration: Be sure to compare this staff hour information to the size and
requirements metrics to assure consistency over time of the
devel opment effort.

24.4.1.4 Rulesof Thumb
There are two Rules of Thumb:
1. Sgnificant under expenditure of hours may result from:

a. difficulties gaffing the contract,
b. overesimating the software Sze, and
c. increasing leves of open problems, and

2. Sgnificant over expenditure of saff hours my result from:

absorbing staff from projects that ended,
underestimating the Sze of the software,
increasing number of errors,

changing requirements, and

e. reduced reuse.

2.4.4.1.5 Personnd and Staff Hours Chart Analysis Example

Figure 2-6 provides an example of apersonnel and staffing chart for an entire project. A few issues of
interest about this example are:

o0 o

2-23

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

1. Notice how in the early part of the project, saffing is running well below plan. Further if we
compare staffing to saff hours, we notice that the number of hours per developer per month is
running above plan. Some possible reasons for this deviation from planned gaff levels

a. Required personnd are not available. Either the developer has been unable to hire them or
other projects from which they planned to absorb staff are running over schedule. Review of
other measurements and metrics should show the developer is behind in requirements anadysis,
design, coding, €tc., if thisisthe case.

i) EVM should be showing a SPI of lessthan 1.

b. Deveoper has over estimated effort required on the project. Thisisunlikely given higtorica
trends that show that the effort required for software developmentsisin the vast mgority of
cases underestimated. Eva uate other measurements & metrics for requirements, size, design
progress, etc. to seeif they also indicate the program has been oversized.

i) EVM should be showing a SPI of one or more.

2. Noticethat in May 02, even though the number of personnd is below the planned level, hours for
the month exceeds the planned level. The developer isworking the team harder to make up for a
shortage of personnd. Excessve schedule pressure will result in reduced productivity dueto
reduced quality and additiona rework required. Watch for signs of areduction in qudity due to the
schedule pressure in the quaity metrics.

3. From Jun 02 on the number of staff and staff hours exceeds the origina plan. This could indicate
the devel oper is atempting to make up schedule by throwing more bodies at the problem.
However, the larger the software devel opment team, the more management overhead and inter-
team communication will be required and thus the lower the productivity per individua on the team.
Even if the developer does manage to make up the schedule by using alarger team at this point, the
result will probably be an increase in project cost.

a. EVM in this gtuation would show an SPI less than one, which may be improving, but a CPI
dropping in vaue.

b. Review other metricsto seeif they corroborate thistrend. Keep in mind thet low early staffing
probably resulted in the requirements analysis and design phases running longer than expected.
In order to make up schedule the developer must therefore reduce the time from what was
origindly planned for coding and testing. Additiondly, there is a strong possibility of qudity
problems due to the low staffing early in the program. Thus the developer must make up for
lost schedule while managing alarger less productive team and trying to correct for qudity
issues due to short cuts taken earlier in the program.

2-24

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

Effort Trend

Personnel and Staff Hours
Entire Project

=== Planned Personnel =3 Actual Personnel Planned Staff Hours Actual Staff Hours

30 6000

5000

; .

Sl

[T

L

3000

Personnel
Staff Hours

2000

-
-
 —— 4

a

|
i
@7}555 vﬂ?& @& }‘59 -

OTRR oT

0

L S O A A S G S

SRR SDR

B

FIGURE 2-6. Personnd and Staff Hours.

24416 Staffing EVM Issues

Using st&ff as the basis of EVM iscdled Leve of Effort™. Useof Leve of Effort should be minimized
as much as possble snceit gives no red indication of the progressin implementing the desired
functiondlity in the software. Possible areas for use of leve of effort may be in Project Management,
Configuration Management, Software Quaity Assurance, and Facilities Maintenance. However, even
these areas may require greeter saffing if the totd size of the effort grows due to requirements increases
or other reasons.

24.4.1.7 Staff Measurement and Metrics References

Further information on Sizing measurements and metricsis available in Reference () “ Practicd Software
Measurement, Objective Information for Decison Makers’, pages 168 — 171.

! See Appendix D & http://www.acg.osd.mil/pmy for further information on EVM implementation.

2-25

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

2.5 QUALITY
2.5.1 Purpose

Tracking problem reports and overadl software complexity providesingght to the qudity of the
developed product in terms of the design, documentation, the software itsdlf, and other factors that
effect codt, schedule, and system performance. This aso provides ingght into the efficiency of the
defect identification and correction procesy(s).

Keep in mind that defects are not restricted to defects in the code only. Erroneous or poorly written
requirements and/or design can have severe impacts on the quaity of the code and are some of the most
difficult problemsto detect and correct using only forma testing. Asarule, asingle software-testing
phase will detect approximately 30% of defects. Againgt design errors, this can fal to aslow as 10%
and even lower for requirements errors. Additiondly, if defects are not tracked until forma testing has
occurred, errors that might have been detected during requirements andysis, design and coding phases,
and corrected at a much lower cost, have now propagated into the formal software integration and
systems integration testing where they are difficult and expensive to detect and correct.

Formal Peer Reviews of requirements, design and code can achieve defect detection rates of 60% to
75% per review. Measurements and metrics collected on peer review defect detection also servesto
indicate the quality of the program much earlier in the life cycle when they can be corrected much more
chegply. Use of forma Peer Reviews will save gpproximately three hours of down stream testing and
defect correction for every hour spent performing peer reviews. The return on investment for forma
peer reviews is approximately 15 to 12, Thus peer reviews not only help identify and correct quélity
problems early in the effort, but dso sgnificantly reduce the amount of time spent in formd testing.

Many developing organizations didike reporting peer review defect results snceiit is believed that the
large number of defects often found in these reviews give afdse view of low quaity for the program,
especidly to individuas unfamiliar with the process. If thisisthe case, the developing organization must
provide some dternative method by which the quality of the development can be judged in the early
phases of development, requirements andysis, design, code and unit test, when effective corrective
action can be taken. Failure to do so will mean that if the program does have qudity problems, they will
only be correctable by means of alengthy and expensive testing and rework phase.

2.5.2 Quality Attributes

The quality metric tracks the total number of problem reports by severity (per reference (b) IEEE/EIA
12207.2 pages 94-96 severity definitions), the number of closed problem reports, the problem reports
which were opened during the reporting period, the age of the problem reports, and the complexity of
the software under development. Problem reports are collected separately for design, documentation,
and software problems. Other problems are those which do not fal into one of the three previous
categories but adversaly impact program performance, cos, or schedule.

Tracking of defects by CSCls, builds, spirals and/or releases also helpsto spot areas of the
development which are experiencing more sgnificant quality problems. If defect dataiis only viewed for

12 Estimating Software Costs, T. Capers Jones, McGraw Hill, 1998, pp198, 199, 426, 478-480, 512-515.

2-26

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

the entire project, overdl trends may appear to be acceptable. However there could be individua
CSClswith severe qudity issuesthat will not be apparent at thisleve of absdtraction.

Aswith other metrics, the developing organization must estimate the number of defects likely to occur.
Such predictions must be based upon historica data from previous developments and provides the basis
for determining the amount of testing and rework, which will be required in order to complete the effort.
This helpsto identify quality issues when defect rates exceed the expected rate, which may indicate
inadequate testing and rework resources are available to reduce the number of open defectsto an
acceptable levels.

2.5.3 Specification of Quality Requirements

The buyer mugt clearly and contractudly identify the minimum acceptable quality level for completion of
the effort. Each delivered defect represents either an inability of the system to perform amission
essentia cgpability, some degradation in its ability to perform amisson essentid cgpatility, or an
increase in technica cost or schedulerisk to the project or the life cycle support of the system.
Minimum acceptable quality must be defined based upon what level of degradation in the
ability of the system to perform mission essential capabilities is acceptable and/or the impact
on the development or lifecycle support of the system. Thefollowing are guiddines for determining
minmum qudity levelsfor asystem:

1. No Priority 1 or 2 defects™,

2. Specify amaximum acceptable number of priority 3 defects per 1000 lines of source code or a
maximum number for the entire system. Components of the software deding with safety (aircraft
navigation, wegpons contral, etc.) or interoperability may have much more stringent quaity
requirements than other less critical components. For these safety and interoperability components,
separate and more stringent quality requirements may be specified than that required for the
remainder of the system. It should aso be considered how these defects will impact the ability of
the operator to perform the misson. Systems operating in high stress and combat environments
should have much more stringent quaity requirements, which avoid increasing the operator
workload and degrading the operators ability to perform the mission, than systems operating in a
more benign environment.*®

3. Specify a maximum acceptable number of priority 4 & 5 defects per 1000 lines of source code or a
maximum number for the entire system. These are essentialy operator inconveniences and other
affects, which do not impact the ability of the system to perform, mission essentid capabilities.

Keep in mind the effect of these defects on the operator’ s ability to perform the mission when
identifying maximum acceptable defect rates.

Note: Each defect represents either an inability of the system to performa mission
essential capability, some level of degradation in that ability, or an increasein
technical, cost or schedule risk to the project or the life cycle support of the

3 SECNAVINST 5000.2B, Part 3 Program Structure Paragraph 3.4.3.1 Navy Criteriafor Certification, subparagraph 17,
and 3.4.3.2 Marine Corp Criteriafor Certification, subparagraph 17. http://neds.nebt.daps.mil/5000.htm

2-27

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

system. Minimum acceptable quality must be established based upon what the
maximum acceptable level of degradation in the performance of mission
essential capabilitiesis and/or itsimpact on the development or lifecycle
support of the system.

2.5.4 Data Collection

2541 Source
The developing agency will provide:
v Actud 'open’ and 'closed' problem report data for each build and/or CSCI.

v' The sanility, or age, of each problem (problem reports open for less than 2 months, between 2 and
4 months, and greater than 4 months).

v' Complexity data
v Edtimated number of “open” and “closed” problem reports for that timein the development.

2.5.4.2 Frequency

The reporting period is monthly after Software Requirements Review (SRR).

2.5.5 Quality Metrics

Software problem reports must be andyzed using three different views - status, age, and priority.
Unless dl three are reviewed, a complete picture of the program will not be available.

2.5.5.1 Software Problem Reports- Status

255.1.1 Purpose

To provide indght into the qudity of the software under development.

25.5.1.2 Description

The numbers of new, total, and open Software Problem Reports (SPR) are graphed over time.

The datafor this metric comes from the developer and any associated testing activities (which can
include Independent Verification & Validation (IV&V) contractors and/or the government testers) and
are asmple graph of the SPRs over time.

25.5.1.3 Analyss

While the absolute number of SPRs found during the program will hopefully be relatively small, the key
isthe trend line of the open SPRs.

If the quantity of open SPRsis seen to beincreasing, the resources that are brought to bear on these
SPRs mugt dso beincreasing.

Additionally, each SPR should be trested individudly. A team should be in place to accurately
investigate each SPR - no two SPRs will require the same amount of work to fix.

2-28

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

Consideration: If historical information is available from previous programs by
the same devel oper, the numbers of SPRs for different pointsin
the development can be estimated. Even without historical data,
the "open” trend line can be monitored to assure sufficient effort
IS maintained on solving problems as they appear.

2.55.1.4 Ruleof Thumb

Increases in SPRs are frequently observed after mgjor reviews (i.e., action items) and the start of testing
activity (testing errors). If theincrease is minor, it is necessary to investigate whether the product is of
high quaity or whether the review was ineffective. If there is adeclining number of open SPRs, thismay
be caused by the redllocation of effort from finding problems to correcting problems (e.g., the testing
effort is being goplied to correction activities and not to testing). In this Situation, test measurements and
metrics should be reviewed to determine if testing is dowing down, faling behind schedule or if Saffing
in the test area has been reduced below planned levels.

2.55.1.5 SoftwareProblem Report Status Chart Analysis Example

Figure 2-7 shows two sample charts. Thefirst chart shows a program progressing normdly. The
second chart shows a program where problem reports remain open and alarge number of problem
reports have been opened during developmentd testing.

2-29

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

QUALITY TREND
SOFTWARE PROBLEM REPORTS - STATUS

| EE SPRs Opened this period Total SPRs Closed =®=—Total SPRs |

3500

3000

2500

2000

»w DT OW

1500

1000

500

SRR SSR PDR CDR DT OTRR oT

QUALITY TREND
SOFTWARE PROBLEM REPORTS - STATUS

| B SPRs Opened this period Total SPRs Closed =& Total SPRs |

3500

3000

2500

2000

»w DT O

1500

1000

500

a 5 = > c =5 o a 8 > o o s = > c
g § & 2 £ 53 3 2 § 8 &2 & &8 ¢ & & 2 3
SRR SSR PDR CDR DT OTRR oT

FIGURE 2-7. Software Problem Report Status.

2-30

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

2.5.5.2 Software Problem Reports- Age
2.55.2.1 Purpose

The Software Problem Report - Age metric provides information about the amount of time any given
SPR remains open and therefore, unsolved.

2.5.5.2.2 Description

The numbers of open SPRs are graphed over time. Generdly, three different age categories can be
used, representing roughly 5% of the program time frame, e.g., for a 3-year program, categories of
SPRs open for less than 2 months, between 2 and 4 months, and greater than 4 months can be used. A
separate graph is made for each SPR priority.

25.5.2.3 Analyss

If SPRs are dlowed to remain open, it may be asign that difficult problems are being left outstanding
without condderation. Generaly it is exactly these SPRsthat can dragtically affect the design.

Therefore, not just the SPR closure rate, but dso the age of the SPRs must be closdly monitored.
2.5.5.2.4 Software Problem Reports Age Chart Example

Figure 2-8 shows two sample charts. The first chart shows a program progressing normaly. The
second chart shows a program with many problem reports till open late in the program.

Note: Due to the magnitude of the data, the SPRs scale on each chart is
different. A reviewer must be aware of similar types of charts with
differing scales.

The SPRs must be carefully reviewed to assure that an abundance of "hard” problems or high priority
problems are not |eft outstanding. A team should bein place to carefully review each SPR and ensure
the proper resources are brought to bear to solve the problem promptly.

2-31

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

QUALITY TREND
SOFTWARE PROBLEM REPORTS - AGE

| SPR open < 2 mths SPR open 2-4 mths @ SPR open > 4 mths |

250

SRR SSR PDR CDR DT OTRR oT

QUALITY TREND
SOFTWARE PROBLEM REPORTS - AGE

| SPR open < 2 mths @ SPR open 2-4 mths SPR open > 4 mths |

SRR SSR PDR CDR DT OTRR oT

FIGURE 2-8 Software Problem Report Age.

2-32

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

2.5.5.3 Software Problem Reports- Priority

2.55.3.1 Purpose

This metric provides information about the priority or importance of open SPRs.
2.5.5.3.2 Description

The priorities of open SPRs are graphed over time. Generdly, three different priority categories can be
used representing have-to-solve versus nice-to-solve problems.

2.55.3.3 Analyss

Higher priority SPRs indicate defects which have amore sgnificant impact on the ability of the sysem to
performitsmisson. The more and higher the priority of these defects the more sgnificant the quality
problems being experienced by the program.

2.5.5.3.4 Software Problem ReportsPriority Chart Analyss Example

Figure 2-9 shows two sample charts. The first chart shows a program progressing normally. The
second chart shows a program with many priority 1 and 2 problem reports till open latein the

program.

Note: Due to the magnitude of the data, the SPRs scale on each chart is
different. A reviewer must be aware of similar types of charts with
differing scales.

2-33

Metrics

SOFTWARE METRICS
PROGRAM HANDBOOK

QUALITY TREND
SOFTWARE PROBLEM REPORTS - PRIORITIES

| SPR Priority 1 and 2 SPR Priority 3 SPR Priority 4 and 5 |

SRR SSR PDR CDR DT OTRR oT
QUALITY TREND
SOFTWARE PROBLEM REPORTS - PRIORITIES
| SPR Priority 1 and 2 SPR Priority 3 SPR Priority 4 and 5 |

SRR SSR PDR CDR DT OTRR oT

FIGURE 2-9. Software Problem Report Priorities.

2-34

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

2.5.5.4 Software Problem Reports— Predicted Versus Actual
2.55.4.1 Purpose

This metric provides information about the actua number of SPRs being generated versus the predicted
number. This metric servesto identify quaity problems and to indicate when the software has achieved
the desired qudlity leve.

2.5.5.4.2 Description

The predicted numbers of SPRs are based upon the number of SPRsinjected during development of
amilar systems and the amount of time necessary to reduce the number to an acceptable level. The
developer’s schedule will be at least partidly driven by the amount of time necessary to reduce the
predicted number of SPRsto the quality level required by the buyer. The predicted number of open
SPRs must reach or drop below the maximum number of SPRs acceptable to the buyer by the end of
the devel opment.

255.4.3 Analyss

If the actua number of cumulative and/or open SPRs stay at or below the predicted numbers of
cumulative or open of SPRs over the program schedule, this indicates the program is mesting its pre-
deployment quality requirements. If the actuad number of cumulative and/or open SPRs exceeds the
predicted levels, this indicates that the quality is less than expected for the program. It further indicates
that the resources alocated for rework may be inadequate since they were based on the number of
defects being equal to or less than the predicted levels.

2.5.5.4.4 Software Problem Reports- Predicted versus Actual Chart Analysis Example
Figure 2-10 shows a sample of the measurement. The following should be noticed and considered:

1. Tota number of SPRs stays below the predicted level until Nov 01 when it climbs steeply above the
prediction line. At the same time, the number of “Open” SPRsis staying well below the Open
SPRs predicted line. Thus, even though more SPRs than predicted are being generated, the
developer is staying ahead of them. However, while the developer is handling the problem, the
cause of the increase should be investigated.

a. Isthere some aspect of build 3 that is contributing to the quality problem?

b. Were shortcuts taken during the build 3 development that could have resulted in an increasein
the number of defects?

c. How isthe developer staying ahead of the increase in defects? Has additiona staff been
dlocated to the task? If yes, what effect isthis having on the program costs?

2. Notice how as each new build starts its test cycle, there is ajump in the number of “Open” SPRs.
Thisisto be expected as testing of the new software and functiondity in abuild isinitiated. Over
time the number of “Open” SPRs continues to drop as testing continues which is what we want to
see.

3. Thisparticular metric does not bresk down the measurements by priority. Thus other
measurements must be reviewed to ensure any SPR priority pecific quaity requirements are being

2-35

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

met. Even though the number of “Open” SPRsiswell below the predicted levd, if alarge

Predicted Versus Actual SPRs

— Actual Cum SPRs = Open SPRsActual = = =Cum SPRsPredicted = = =Open SPRs Predicted
4000
3500
- e -
3000 1 ——= =
o L 4
L -
- r il
2500 — =11
“
L 2
. - 1
v)
o -’ —]
o 2000 o
#* 4 N M n
4
1500 — e livaliosioa st tes
.
Pis B I~
Pd I © o e = - =
. = c a4k JE T ==~
1000 2 A 1 2 =
v - S~
- P S~ .
, s M S -
500 T3 — TT_‘———————
Am] 11]] .
Build 2 | Build 3 | Build 4

S A A R G G G g G g G G ST Vi

percentage of these were priority 1 or 2 there would till be cause for concern.

FIGURE 2-10. Predicted Versus Actual SPRs

2.5.5.5 McCabe's Cyclomatic Complexity

2.555.1 Purpose

This metric dlows the tracking of complexity by Computer Software Units (CSU).
2.5.5.5.2 Description

McCabe's Cycdlomatic Complexity isametric*, which has a direct corrdlation to maintainability and
reliability (high complexity leads to software that is difficult to maintain and is unrdiable). The metric is
caculated asfollows:

V(G)=E-N+P

where:

¥ SEI Cyclomatic Complexity http://www.sei.cmu.edu/str/descriptions/cyclomatic.html

2-36

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

P = number of connected components
E = number of edges (transfers of control)

N = number of nodes (sequentia group of statements containing only one transfer of
contral)

25553 Analyss

The higher the complexity of aunit of code, the more difficult it isfor the developer to understand what
the unit of codeisdoing. Thisresultsin higher defect rates, higher life cycle maintenance costs, and
eventudly the code becomes essentidly unmaintainable since it is so complex that any attempt to correct
defectsin the unit of code ether fals or resultsin additiond defects. SEI identifies the following leve of
risk with different levels of cyclomatic complexity.

v" Cydomatic Complexity of 1 — 10, asmple software module without much risk.

v Cyclomatic Complexity of 11 — 20, amoderately complex software module with moderate risk.
v" Cyclomatic Complexity of 21 — 50, a complex, high-risk software module.
v

Cyclomatic Complexity above 50, untestable software modules, very high risk. Such modules will
be virtudly impossible for developers to fully understand and difficult or impossible to develop
effective test procedures for the modules. The complexity of such code will make the performance
of full path testing even during unit testing extremely difficult or impossible.

Every attempt should be made to keep cyclomatic complexity for individua software modulesat 10 or
less. For modules above 10, if possible, they should be split into smaler modules. Due to the high risk
associated with modules with a complexity above 20, such modules must be redesigned into smaller less
complex modules.

2.5.5.5.4 McCabe's Cyclomatic Complexity Chart Analysis Example

Figure 2-11 shows a sample chart of the number of CSUsin different risk categories of
Cyclomatic Complexity. Asdevelopment progresses for the CSCI the percentage of the high
risk CSUs s reduced throughout the coding and unit test phase. CSUs with high Cyclometic
Complexity will tend to be very high cost due to the high percentage of defects generated, and
the difficulty in adequately testing and detecting such defects. Reducing the number of high
Cyclomatic Complexity moduleswill tend to increase overdl quality by decreasing defects.

2-37

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

CSU Cyclomatic Complexity for Build 1, CSCI 1

CSUs with CC £10 O # CSUs with 11£ CC £ 20 0 # CSUswith 21 £ CC £50 B # CSUs with CC 3 50

1200
1123
1084

1019

1000
931

817

800

682

600 558

#CSUs

400

427
201
09 13
200 177 26 85 00
48
. 15
68] 0 0]
Jiz_liz 03 15 4 85 e 37 8 g 196 123 40
0 - T T T T T T T T T T

Jan-02 Feb-02 Mar-02 Apr-02 May-02 Jun-02 Jul-02 Aug-02 Sep-02 Oct-02 Nov-02

FIGURE 2-11. Computer Software Unit Cyclomatic Complexity

2.5.6 Maturity

25.6.1.1 Purpose

Evduate the qudity of a software intensve system to determineif it is ready for operationd test.
25.6.1.2 Description

The maturity metric is the average number of Software Problem Reports (SPR) per test hour detected
during a defined test period (weekly or monthly) depending on the length of the test phase. For
example, if aone-month period is used and 320 hours of testing are performed, with 32 SPRs detected,
then 0.1 SPRs per test hour have occurred. The SPRs per test hour should then be plotted over time.
A decreasing maturity metric, which fals below a predetermined threshold, is an indicator that the
software is ready for operationd testing. The threshold is based on the success of previous software
releases for the same or amilar systems with a comparable level of complexity and testability. Even if
the metric fdls below the threshold, if there are open Priority 1 or 2 STRs, or dl of the requirements of
the software have not yet been tested, the software is not ready for operationa testing.

2-38

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

25.6.1.3 Analyss

During the beginning of atest phase it is not unexpected to see an initid jump in the number of SPRs per
test hour. Thismay be epecidly pronounced for the initid builds of a software development where
there is a higher percentage of new, untested functiondity in the sysem. Astesting progresses, the SPR
rate should drop as more SPRs are detected and corrected. In the find build of the development, when
al requirements have been implemented, the SPR rate should be below the established threshold with a
continuing downward trend before determining that the software is ready for operationa testing.
Reducing the SPR detection rate below the maximum acceptable level is only one of the criteria. Others
that should be considered are:

1. Arethereany priority 1 or 2 STRS? If yesthe software is not ready for release.
2. Haveadl of the requirements been tested? If not the software is not ready for release.

3. Isthetota number of open STRsless then that required for the syslem? If not, the software is not
ready for release.

25.6.1.4 Maturity Chart Analyss Example

Figure 2-12 shows an example for a software development effort. SPRs per test hour are graphed for
the systems integration and flight-testing phases for each of four builds. “Required SPR Detection Rate”’
delinegtes the threshold a the completion of Build 4, when full functiondity has been implemented.
“Linear Higtorical Maturity” shows the linear regression of historical SPR detection rates from previous
developments. The “Linear Current Development” shows the results of alinear regression of the SPRs
per test hour rate for the current development. Notice that the SPR detection rate per test hour rises
sgnificantly at the beginning of the Build 3 tet cycle. Thisis expected given the large amount of new
functiondity that was implemented in Build 3. The overal trend for the number of SPRs detected per
hour is decreasing and iswdll below the linearized historicd rate. Throughout Build 4 testing therate is
below the threshold and is continuing a downward trend.

2-39

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

Release Maturity

=== Current Dev. Req. SPR Rate = = =Linear Historical Maturity = = =Linear Current Dev.

0.25

Build 1 Build 2 Build 3 Build 4

0.2

0.15

B e YA

0.05 \

0

AN A S S SR S A SR N B S B A

SPRs Per Test Hr

FIGURE 2-12. Software Release Maturity Metric

2.5.7 Quality & EVM lssues

Aswas discussed previoudy, defects result in the inability to perform an essentia cgpability or various
levels of degradation in the ability to perform the essentid capability. Thistrandaesinto sysem
requirements, which are not implemented correctly. When the Government buys software, it wants the
requirements for the software to be implemented. Thus a preferable means of employing EVM isto tie
it to the implementation of requirements™. 1n each phase of software development, any outstanding
defects should be equated to requirements incorrectly implemented and EVM appropriately reduced.
For example:

v' Assume at the end of the requirements analysis phase for a CSCl there are 1000 software
requirements identified in the CSCI’ s Software Requirements Description (SRD). However due to
forma peer reviews of the requirements or other document reviews, 50 of these requirements have
defects identified againgt them. Only 95% of the earned vaue for the requirements analysis phase
would be taken. If the planned Budgeted Cost of Work Scheduled (BCWS) for the CSClI’s
requirements analysis was $1M, and each software requirement is assumed to take the same
amount of effort to develop. The Budgeted Cost of Work Performed (BCWP) at this point would
be $950K. Schedule Variance (SV) would thus be -$50K. If the Actual Cost of Work Performed
(ACWP) were $1.1M to reach this point, the Cost Variance (CV) would be - $150K .

1> See Appendix D & hitp://www.acq.osd.mil/pm/ for further information on EVM implementation.

2-40

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

v' Assume at the end of the design phase for the same CSCl there were, as aresult of formal design
reviews and other document reviews 40 requirements identified that were not correctly designed. In
this case only 96% of the earned value could be taken at this point. If the BCWS for the CSCI’'s
design phase was $2M, than the BCWP would be $1.92M with an SV of -$80K. If the ACWP
was $2.1M to reach this point, CV would be -$180K.

v' Assume at the end of the code and unit test phase for the same CSCl, there were as aresult of
formal code reviews and tests, 60 requirements that were not correctly coded. In this case only
94% of the earned vaue could be taken at this point. If the planned BCWS for the CSCls code
and unit test phase was $2M, than the BCWP would be $1.88M with aSV of -$120K. If the
ACWP was $2.2M to reach this point, CV would be -$320K .

v' Similar examples gpply for other phases. In each case it was assumed that the developer planned to
have everything done at the end of the phase. Thisis unredligtic Snce there are dways defects
preventing full implementation of dl requirements at the end of any phase. A redidtic planwould not
assume or plan for zero defects at the end of each phase and would include arework period to
correct a predicted number of defects at the end of the phase.

Cyclomatic Complexity cannot easly be trandated into abass for taking earned vaue. Its purposeisto
attempt to predict which module will experience qudity problems due to an excessvely complex design.
The developer may choose, on the basis of historical data, to assume that some percentage of the
software modules or CSUs will necessarily have acomplex design, and dlocate a higher than average
BCWS to those CSUs based on this historical predictions.

2.5.8 Quality References

Further information on Quality measurements & metrics can be found in reference (c) “Practica
Software M easurement, Objective Information for Decison Makers’, on pages 179 — 184.

2.6 CAPACITY
2.6.1 Purpose

Computer Resource Utilization (CRU) tracks planned and actua percentage utilization of target
computer resources and providesingght to the avallability of hardware resources as the desgn
progresses. Computing resource dementsare: (1) processor throughput for each individua processing
element, (2) memory for each processing dement, and (3) Input/Output (1/0) for each individua bus or
interna data network. CRU for the host development system is also tracked, as these resources can
have an impact on cost and schedule of the development effort.

2.6.2 Description

Processor throughput is defined as the number of instructions per second that the processing dement is
capable of performing using a given mix of ingructions (which should closdy match the intended
operationa code). When calculating percentage utilization, the operationa code together with any
overhead functions (interrupts, operating system, parale processng etc.) must be evaluated for aworse
case scenario.

2-41

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

Memoary utilization must be given for each type of memory found in the system (i.e, no Snglevadue asa
conglomerate of dl memory within the system), and is defined as the ratio of memory used to the
amount of memory available. Examples might include 54% memory utilization for the MIPS R4000
loca memory, 26% memory utilization of the common memory on the mission computer card, and 43%

memory utilization of the bulk memory.

I/0 bus utilization is defined as the ratio of the amount of bus bandwidth used to the amount of
bandwidth available for each busin the sysem. The amount of bandwidth used must not only include
actua data but also overhead data and preamble, post-amble information.

2.6.3 Data Coallection

2.6.3.1 Source
The developing agency will provide computer resource utilization data for each build.

2.6.3.2 Frequency

Theinitid CRU estimates are updated at mgor milestones up to and including Test Readiness Review
(TRR). Planned and actud CRU is reported monthly after System/Subsystem Design Review (SSDR).

2.6.4 Capacity Metrics

2.6.4.1 Computer Resour ce Utilization (CRU) Usage
2.6.4.1.1 Purpose

This metric ties together the hardware and software by presenting the amount of hardware (memory,
bus bandwidth, throughput) that is required to operate the given software.

2.6.4.1.2 Description

The amounts of memory, bus bandwidth, and throughput for each memory type, bus, and engine are
plotted over time.

Note: For large systems, the number of processors, buses, and memory systems
can be quite large. Each one must be tracked individually and NOT
aggregated. Any one of these components can become a choke-point for
the entire system.

The developer must provide data showing the amount of usesble hardware resources, and the
estimation of the percentage of utilization over time.

The developer should indicate the multiplying factors that were used to convert aline of high-level code
to the memory. The government must assure that these factors are met as the development moves from
design through Code & Unit Test (C&UT).

Additiondly, bus throughput is a critica factor that should have a smdl-dedicated team in place to
monitor and control each message on each bus.

2-42

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

The developer must dso predict the performance for each individua release or build of the software.
Initid builds or releases should have predicted utilization levels well below the utilization requirements for
the sysem. As more functionality is added to each succeeding build or release, the leve of utilization for
that build or rdease will increase. Thiswill alow the developer to compare actud utilization for each
build or rease to predicted levels and give early indications of the accuracy of the predictions. If the
utilization of early builds and releases exceeds the predicted utilization, even if it is ill below the
utilization requirements of the entire system, thisindicates the developer has underestimated the
utilization of the sysem and must immediately begin an effort to determine how to meet the utilization
requirements. The sooner such build actuas can be evauated to determine how they match predicated
utilization requirements the better. Early engineering builds should be used in order to generate actua
data on utilization as soon as possible in order to vaidate predicted utilization.

2.6.4.1.3 Analyss

Compiler updates and changes can severely affect the Computer Resource Utilization (CRU). If a
compiler verson changeisintroduced, the effect is generaly positive (i.e., less code will be generated,
requiring less memory and less throughput), but thisis not dways true.

Clock speed changes, together with afaster bus or better access to memory, may aso increase the
usable CRU.

In any event, changes in requirements mean changes in code, which aso ripples to the CRU.
2.6.4.1.4 CRU Utilization Chart Analysis Example

Figure 2- 13 shows two sample charts. The firgt chart shows a program progressing normaly. Inthis
example it is assumed there is only a single processor, memory block and 1/O bus so dl may be shown
on the same chart.

The second chart shows a program where reserve requirements have been used heavily. Inits current
condition, this system is not deployable to operationd forces and may fall OPEVAL. Thehigh
percentage of memory and CPU utilization may have made it impossible for this system to meet its
various performance requirement, especidly the rea time or near redl time requirements. Additiondly,
thereisvirtuadly no room for enhancements and upgrades to the system, meaning the maintenance costs
will be very high. The metrics have been clearly indicating there is such a problem since prior to
September with no noticeable effort to take corrective action. Possible courses of action open to the

program:
1. Deday OPEVAL whilethe code is completely redesigned to meet the utilization requirements. This

will result in long schedule ddays and large cost overruns and may be impossible without severdy
reducing the requirements and functiondity of the system.

2. IfitisaCOTS based system it may be relatively easy to upgrade the system’s CPU, memory and
I/0O in order to meet the origind utilization requirements. While thiswill delay the program and
increase the codts, it islikdy to be much less expensgive than trying to redesign the system.

3. A combination of the previous two options.

2-43

Metrics

SOFTWARE METRICS
PROGRAM HANDBOOK

—4Z2mOXxmT

100

CAPACITY TREND
CPU, MEMORY, AND /O UTILIZATION

Actual Memory Actual CPU Actual I/0 «=&==planned CPU, Memory, and 1/O

SRR SSR PDR

—ZmOXxmT

100

CAPACITY TREND
CPU, MEMORY, AND /O UTILIZATION

Actual Memory == Actual CPU Actual I/O =&=planned CPU, Memory, and I/O |

ST T

a = = > c 5 =) o = > o c a = = > c
o) 3) 5 g o o ° @] ©] © 5
i = < =] - < »n o z o - fing = 2 = 3

SRR SSR PDR

FIGURE 2-13. Computer Resources Utilization

2-44

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

2.6.5 Capacity Utilization EVM I ssues

Requirements for Capacity, amilar to those rdating to systems performance are often very difficult to
track effectively usng EVM®. A performance requirement for software usualy reguires the software to
complete some tasks in a specified period of time, some examples of performance requirements are:

v Respond to an operator input within .5 second.
v Accept and process at least 1,000 radar contacts per second with no loss of data.
v Accept and process navigation data received at an 8-hertz rate with no loss of data.

Utilization and performance requirements can be much more difficult to implement since they can dso
encompass arange of other implementation requirements. For example:

v Thereisarequirement for processor A in the system to utilize no more than 50% of its processing
capacity. Assume that processor A isusing 75% of its processing capacity. This may require that
the software executing on processor A be redesigned to make it more efficient in order to meet the
50% capacity utilization requirements. Assume that there are 100 requirements traced to the code
running on processor A. Even though dl these requirements may have been tested and found to be
running correctly, because the utilization requirement is not being met, none of these requirements
can be consdered to be complete. These 100 requirements may al need to be extensively
redesigned, coded and tested in order to meet the processor utilization requirement.

v Assume that the navigation system is required to accept 8-Hz navigation data and processit with no
loss. Assume there are 50 other requirements dedling with how the navigation datawill be
processed. If the 8 Hz processing requirement is not being met, than none of the other 50
requirements can be considered met since they may have to be completely redesigned, re-coded
and re-tested in order to meet the 8 Hz performance requiremert.

From an EVM perspective, this meansthat if a performance or utilization requirement is not being met,
al the other requirements describing how to implement the software which is related to that utilization or
performance requirement cannot be considered to have been met either, or at least not completely met.
Thus, if such an issue occurs, one option is not to take EVM for any of the related requirements which
are associated with the implementation of the performance or utilization requirement. However, since
problems with performance or utilization requirements may not be discovered until the system isin
coding, software integration testing or later, this can be extremey messy. By thistime the earned vaue
has probably been taken for the design, coding and some of the testing of the software related to these
implementation requirements. It may be only practica to not take earned vaue sarting a the point
where the failure of aperformance or utilization requirement has been discovered. For example:

v Assume that the software for a system will be implemented in 4 builds. Assume thet the system is
required to utilize no more than 50% of bus A when dl the requirements of the system are
implemented. As part of the development plan for build 1, it is determined that no more than 25%

18 See Appendix D & http://www.acg.osd.mil/pmy/ for further information on EVM implementation.

2-45

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

of the bus A throughput should be utilized when dl the requirements of build 1 are implemented.
During Systems Integration testing for the first build, it is discovered that the 1O utilization on bus A
isactudly 35%. Assumethat it isaso determined that there are 100 implementation requirementsin
build 1 that require the use of bus A. One option for earned vaue might be to not take any further
Earned Vdue for these 100 requirements until the bus A utilization requirement problem was
resolved. |f there were 1000 requirementsin build 1, and the BCWS was $10M for build 1
systems integration, than the BCWP would be $9M and the SV -$1M. If the ACWP was $11M
to conduct build 1 systems integration testing, thiswoud resultinaCV of $2M.

v" It might be concluded for the previous case, that some credit should be given for the correctly
implemented requirements, even though the bus A utilization requirement had not been met. It could
be decided that; 50%, 25%, or some other amount of the earned vaue for the 100 requirements
would be withheld until the bus A utilization requirement had been met. This would depend on the
systems and software engineering’ s andysis of how much rework would be required of the existing
software in order to meet the utilization requirement. 1f 25% were withheld, than the SV would be
$250K and the CV would be $1,250K.

v" For subsequent builds of the system, the same withholding of earned value would also occur until
the bus A utilization requirement had been corrected. Thus assume that in build 2 an additiona 100
requirements would be implemented which would utilize bus A. Assume the entire cost for build 2,
BCWS, was $30M and the cost for al phases of the development of these 100 bus A requirements
in build 2 was $3M. [f the bus A utilization problem was not corrected by the end of build 2 and
the same 25% withhold was used, this would mean the BCWP was $29,250K,, if everything else
for build 2 was implemented correctly. The SV would therefore be -$750K. If the ACWP for
build 2 were $32M, the CV would be -$2,750K.

v Kegp in mind that there are avariety of waysthe bus A utilization requirement might be resolved.
The code might be redesigned to meet the utilization requirement. The Government may change the
requirement to make it easier to meet. Bus A might be upgraded to a higher bandwidth bus. A
combination of dl three may be used to solve the problem.

The EVM methods described above result in avery heavy pendty for failure to meet a utilization or
performance requirement since it results in reducing or diminating earned vaue for any other
requirement that relies on the resource being utilized or contributes to meeting the performance
requirement. This may seem unreasonable, until one consders the cost and schedule delay that could
impact the program if it is necessary to conduct aradica redesign of the software architecture in order
to meet the utilization and or performance requirement. Such problems are notorious for being
extremely expensve to resolve in software. It is often much chegper to resolve these problems with
upgrades to the CPU, memory, 1O or whatever other resource is bottlenecking the software. Failure to
adequately weight such a problem will result in an unredidicaly high CV and SV, which will not reflect
the difficulty of correcting such a problem.

2.6.6 Capacity Utilization References

Additiond information on measurements and metrics for capacity utilization can be found in reference
(c) “Practical Software Measurement, Objective Information for Decison Makers’, pages 184 — 186.

2-46

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

2.7 SCHEDULE
2.7.1 Purpose

The schedule performance measure tracks the planned date and the actua date for each milestone and
provides an understanding of how al mgor events for the program development effort are related.
Attainment or non-attainment of program milestones can be an indicator of genera program well being.
CSU schedule performance can be tracked during the design, code, and test phase. Software builds
can be tracked as appropriate.

2.7.2 Description

See Appendix C for alist of IEEE/EIA 12207 reviews and milestones along with their corresponding
MIL-STD-498 and DoD-STD-2167A reviews and program milestones. It isimperative tha entry and
exit criteriaare wel defined for each milestone and that the developer and government agree to these
definitions.

It is highly recommended that origina schedules be kept and compared to current actual and projected
schedules. Origina schedules should not be changed unless the Program Manager is fully aware of why
the schedule change is necessary. FHoating baseline schedules cause programs to appear dways on
schedule, dways compare the current schedule with the last one received.

2.7.3 Data Coallection

2.7.3.1 Source
The deveoping agency will provide milestone performance data.

2.7.3.2 Frequency
The milestone performance estimates are updated monthly after contract award.

2.7.3.3 Format(s)

Idedlly program schedules should be provided in Microsoft Project or some other project- planning tool
by the developer. Both planned and actua completion dates for the various tasks and Work
Breakdown Structure (WBY) items in the schedule must be identified.

2.7.4 ScheduleMetrics

Developing agencies performance may be tracked by monitoring CSU (Computer Software Units)
Design, Code, and Test performance, and Mgor Milestone achievement. A rule of thumb isthat late or
unacceptable software schedules are often good indicators of schedule risk and bad software products.
2.74.1 CSU Design, Code, and Testing Tracking

2.74.1.1 Purpose

Providesingght into the rate at which CSUs are completing design, coding and testing and how it
corresponds to the project plan and schedule.

2.7.4.1.2 Description

2-47

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

CSUs aelow leve software routines and functions. In Object Oriented systems CSUs roughly
correspond to methods, functions and other executables in the assorted classes. 1n an Object Oriented
development it may be determined that tracking the development of classes is more effective than
CSUs. Inthisdiscusson CSUs will be utilized.

2.7.4.1.3 Analysis

Evauation of the developing agency performance during software design, coding, and testing provides
ingght into the developer's ability to achieve planned schedules.

When evauating progress of the CSU development, it is essentid to determine if the planned
functiondity/requirements are being implemented. The progressin CSU development must be evauated
to determine if the software requirements alocated to those CSUs are actudly being implemented. For
example: assume that on 1 Jan 02, 300 CSUs are planned to have completed coding and have
implemented 100 software requirements. However, while it turns out that 300 CSUs have completed
coding on 1 Jan 02, only 75 software requirements have been completed. Thisindicates that the
program is behind schedule. The number of CSUs necessary to implement the software requirements
have been under estimated, or the Size has been underestimated, or both.

2.74.1.4 CSU Desgn, Code, and Test Chart Analysis Example

Figure s 2-14 through 2- 16 show development progress for CSCI A, build 1. Figure 2-13 shows
actua progress againg plan of the CSUs completing detailed design. Figure 2-14 shows actua
progress againg plan for CSUs completing Code & Unit Test (CUT). Figure 2-15 shows actua
progress againg plan for CSUs completing Integration Testing. In each of the figures, both planned and
actuas of the numbers of software requirements planned to be detailed designed, CUT or integration
tested as aresult of the CSUsimplementation are aso identified. This alows a comparison to be made
to ensure that the number of CSUs is sufficient to meet the planned functiondity. Notice that for
detailed design and CUT, the planned number of CSUs have been completed, athough there is
approximately a 3-month delay. However, the number of requirements implemented is Sgnificantly
below the number planned, 103 versus 145. Thisindicates that the effort is even further behind than the
three-month schedule dip in completing the planned 290 CSUs indicates. Combined with the schedule
dip, it seems obvious at this point that the number of CSUs has been underestimated and not enough
time has been dlocated to the effort. Some other possible questions and considerations are:

v How does the planned staffing for the effort compare against the actud staffing for this effort? Isthe
problem completely or partidly caused by inadequate affing?

v’ If saffing is comparable with the planned levels, and if the size (SLOC, FPs, etc)) isthe same as
esimated, why is estimated productivity running so far behind actud productivity (SLOC/hr)? Is
the staff less experienced or skilled than what was origindly planned? Are the requirements more
complex and difficult to implement than expected?

v" What about the size (SLOC, FPs, €tc.) of the CSUs? Has the size increased over what was
origindly predicted? If thiswere the case, it would account for the effort falling behind in the
implementation of requirements even if the staffing and productivity was at predicted levels.

2-48

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

Notice that the total number of CSUs completing integration testing is less than the number having
completed detailed design and CUT, 276 versus 290. The number of requirements that completed
integration testing was a o less than the number, which completed detailed desgn and CUT, 99 versus
103. Thisismogt likely due to failed test procedures. Since the test procedure failed, the associated
CSUs and requirements cannot be considered complete. Requirements, which were either not
implemented or failed testing in this build, will have to be completed a some later date in the
development of afuture build. Thiswill further increase the workload in these future builds causing
further delays. Based on the performance achieved in build 1, the number of CSUs planned for future
builds are probably inadequate for the planned for requirements and the amount of cost and schedule
required is also probably inadequate. Future build schedules should be revised based on the build 1
actuas.

CSU Design Completion
CSCI A Build 1

| Req Completed Design, Planned == Req Completed Design, Actual == CSUs Completed Des, Planned CSUs Completed Design, Actual

80

290 CSUs Planned
145 Regs Planned

- I

70 290 CSUsActual
103 Regs Actua
60 /

@
<)
<

CSUs or Req
ey
o

w
o

20

i}imi

T T
Jan-02 Feb-02 Mar-02 Apr-02 May-02 Jun-02 Jul-02

FIGURE 2-14. CSU Design Completion

2-49

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

CSU CUT Completion
CSCIABuild 1

Req Completed CUT, Planned == Req Completed CUT, Actual == CSUs Completed CUT, Planned CSUs Completed CUT, Actuall

70
290 CSUs Planned
145 Regs Planned
60 £ * 290 CSUs Actual —
103 Regs Actual
50 /
g 40
@
S]
1]
o)
%)
< 30
20
10
0 - ﬂ_‘ T 7 T 7 T T T T
Apr-02 May-02 Jun-02 Jul-02 Aug-02 Sep-02 Oct-02 Nov-02 Dec-02

FIGURE 2-15. CSU Code & Unit Test (CUT) Completion

2-50

SOFTWARE METRICS Metrics
PROGRAM HANDBOOK

CSUs Completed Integration Test

CSCI A Build 1
Req Completed IntTesting, Planned = Req Completed Inttest, Actual
== CSUs Completed Int Test, Planned CSUs Completed Int Test, Actual

90

290 CSUsPlanned
&~ 145 Regs Planned —

80
276 CSUsActua
99 Regs Actud
70 / \ -
60
50 \

40 \
30

20 1 \
10 A
0 - T 7 T 7 T T T

Aug-02 Sep-02 Oct-02 Nov-02 Dec-02 Jan-03 Feb-03 Mar-03

FIGURE 2-16. CSUs Completed Integration Test

#CSUs or Regs
L~

2.74.2 Major Milestone Tracking

2.7.4.2.1 Purpose

Track progress of the program in achieving milestones.
2.7.4.2.2 Description

Therewill be various programmatic and technica reviews conducted during a software devel opment.
Each of these reviews must have specifically identified exit criteria, see NAVAIR INSTRUCTION
4355.19B Systems Engineering Technica Review Process”’. Appendix C contains alist of IEEE/EIA
12207 reviews and milestones and the corresponding MIL-STD-498 and DOD-STD-2167A reviews
and milestones.

2.7.4.2.3 Analyss

It isessentid that al of the exit criteria be completed before a milestone can be considered to have been
achieved. For example: assume that the first build of the development is planned to contain 1000
requirements. However, even though it is delivered on time and on cogt, only 750 requirements have

" NAVAIR INSTRUCTION 4355.19B Systems Engineering Technical Review Process
https://directives.navair.navy.mil/index.cfm

2-51

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

been implemented. The milestone has not been completely met. There are an additiond 250 software
requirements that must be squeezed into a later point in the development. Eventudly it will no longer be
possible to hide cost and schedule overruns by declaring milestones met even though dl of the
requirements have not been implemented. Another type of important milestone is the ddlivery dates for
hardware and software not being developed as part of the effort. Late delivery of Government
Furnished Equipment (GFE), COTS hardware and software, or hardware and software being delivered
separately from the effort being tracked can have a mgor impact on the project.

Dedaring technica and programmatic reviews complete when they have not met dl of the exit criteria
can dso be very risky. Assume that the Software Requirements Review is declared completed on its
scheduled date, even though alarge percentage of requirements andysisisincomplete. Thiswill result in
the remaining requirements andyss being completed during design, code and unit test and possibly even
later test phases. While some level of concurrency is desirable and expected between software
development phases, too much concurrency results in low quality due to rework to correct design and
code based on immature incomplete requirements. This resultsin higher codts, longer schedule and
reduced functiondity being delivered to the flest.

2.74.2.4 Major Milestones Chart Example

Fgure 2-16 shows two sample charts. Thefirst chart shows a program progressng normaly. The
second chart shows a program behind schedule.

2-52

SOFTWARE METRICS
PROGRAM HANDBOOK

Metrics

MAJOR MILESTONE TRACKING
—&— Planned SSR = & Actual SSR Planned SSR Actual SSR
e=8===planned PDR = & Actual PDR e==E==Planned CDR = & Actual CDR
=== pJanned DT = & Actual DT ==F==planned OTRR = & Actual OTRR
Be—
- m A
R
E [——
\Y s =m
! De—
E & = A
w B——t———
- "= A = R E EA
Dl
& A
SRR SSR PDR CDR DT OTRR oT
MAJOR MILESTONE TRACKING
—&—Planned SSR = bk Actual SSR Planned SSR Actual SSR
@B planned PDR = b Actual PDR === Planned CDR = &= Actual CDR
=== planned DT = & Actual DT === planned OTRR = & Actual OTRR
Be—
&/ = A
R
E [——
\Y » m a
! De—
E & = A
w B——t———
A m A E mE B
Be—t
SRR SSR PDR CDR DT OTRR oT

FIGURE 2-17. Overdl Schedule.

2-53

Metrics SOFTWARE METRICS
PROGRAM HANDBOOK

2.7.5 Schedule EVM Issues

As has been previoudy discussed, the dlocation of earned value should be closdly tied to the
implementation of software metrics. While the schedule metrics, aswith al metrics provide vauable
ingght into the progress of the development, they can be mideading if they are not accurately related to
the implementation of requirements.

In the discussion of CSU design, CUT and Integration Testing measurements and metrics, while the
number of CSUs planned to be designed and coded was achieved, the number of software
requirements was significantly lower than planned. If Earned VVaue had been based entirdly on the
number of CSUs actually completed in the design phase or the number of CSUs coded for the code &
unit test phase the BCWP and thus the SV and CV would be too high'®. While the planned number of
CSUs had been designed and coded, the number of planned requirements had not been implemented.
The actud number of requirements implemented must be considered when dlocating EVM if an
unredigticaly high SV and CV isto be avoided.

2.7.6 Schedule References

Additiond information on schedule measurements and metrics can be found in reference (€) “Practica
Software Measurement, Objective Information for Decison Makers’, pages 161 — 168.

18 See Appendix D & hitp://www.acq.osd.mil/pm/ for further information on EVM implementation.

2-54

SOFTWARE METRICS Contract Application
PROGRAM HANDBOOK

3. CONTRACT APPLICATION

3.1 CONTRACT & RFP WORDING REFERENCES

See the latest version of the NAVAIR Acquisition Guide™ for suggested software measurement and
metrics for Requests For Proposals (RFP), Statements Of Work (SOW), Contracts and Contract Data
Requirements List (CDRLS).

Additiona Information on suggested wording for RFPs, SOWSs, Contracts and CDRLSs can be found in
reference (f). While reference (€) has replaced the remainder of reference (f), the Department of
Defense Implementation Guide for reference (f) is the most current available.

¥ NAVAIR Acquisition Guide, AIR-1.1.1, http://www.nal da.navy.mil/acquisition/tools.html or
http://www.deskbook.osd.mil/

3-1

SOFTWARE METRICS Acronym and
PROGRAM HANDBOOK Abbreviations

APPENDIX A. Acronym and Abbreviations

A
ACWP Actua Cost of Work Performed
AlIR-4.1 Systems Engineering Department

AlIR-4.1.11 Software Engineering Divison

B
BCWS Budgeted Cost of Work Scheduled
BCWP Budgeted Cost of Work Performed

C
CUT Code & Unit Test
C&UT Code and Unit Test
CCP Code Counting Program
CDR Critica Desgn Review
CDRL Contract Data Requirements List
CMM Capability Maturity Model
CMMI Capability Maturity Modd Integrated
COTS Commercid-Off-The- Shdlf
CPI Cost Performance Index
CRU Computer Resource Utilization
CSC Computer Software Component
CSCI Computer Software Configuration Item
Csu Computer Software Unit
CcVv Cogt Variance

D
DT Developmentd Test

E
EVM Earned Vdue Management

A-1

Acronym and SOFTWARE METRICS

Abbreviations PROGRAM HANDBOOK
F
(none)
G
GFE Government- Furnished Equipment
H
(none)
I
1/0 I nput/Output
IPT Integrated Program Team
V&V Independent Verification and Vaidation
J
(none)
K
(none)
L
(none)
M
(none)
N

NAVAIR Nava Air Sysems Command

0]
OPEVAL Operationa Evauation
ORD Operationd Requirements Document
P

PDR Priminary Design Review

A-2

SOFTWARE METRICS Acronym and

PROGRAM HANDBOOK Abbreviations
PSM Practical Software Measurement
PSM Practical Software & Systems Measurement
Q
(none)
R
RFP Request for Proposal
S
SAM Surface-to-Air Missle
SDP Software Development Plan
SEl Software Engineering Inditute
SLOC Source Lines of Code
SM&M Software Measurement and Metrics
SOwW Statement of Work
SPI Schedule Performance Index
SPR Software Problem Report
SRD Software Requirements Description
SRR System Reguirements Review
SRS Software Requirements Specification
SSA Software Support Activity
SSR Software Specification Review
SSS Systerm/Subsystem Speification
SV Schedule Variance
T
TECHEVAL Technicd Evaduation
TRR Test Readiness Review
U
(none)

A-3

Acronym and SOFTWARE METRICS

Abbreviations PROGRAM HANDBOOK

\
V&V Verification and Vaidation

W
WBS Work Breakdown Structure

X
(none)

Y
(none)

Z
(none)

A-4

SOFTWARE METRICS Acronym and
PROGRAM HANDBOOK Abbreviations

APPENDIX B. Additiond Reference Materid

Boehm, B., Software Engineering Economics, Englewood Cliffs, NJ, Prentice-Hall 1981.

Florac, W., Software Quaity Measurement: A Framework for Counting Problems and
Defects, Software Engineering Ingtitute, Pittsburgh, PA, CMU/SEI-xx-TR-xx Mmm 199x.

Goethert, W., Software Effort and Schedule Measurement: A Framework for Counting Staff-
Hours and Reporting Schedule Information, Software Engineering Indtitute, Pittsburgh, PA,
CMU/SEI-xx-TR-xx Mmm 199x.

Humphrey, W., Managing the Software Process, Reading, MA, Addison-Wedey Publishing
Co. 1989.

Ingtitute of Electrical and Electronics Engineers, Standard for a Software Qudity Metrics
Methodology, P-1061/D21.

McAndrews, D., Edablishing a Software M easurement Process, Software Engineering Indtitute,
Pittsburgh, PA, CMU/SEI-xx-TR-xx Mmm 199x.

Park, R., Software Size Measurement: A Framework for Counting Source Statements,
Software Engineering Indtitute, Pittsburgh, PA, CMU/SEI-92-TR-22 Sep 1992.

Rozum, J., NAWCADWAR -- Software Measurement Guide, Software Engineering Inditute,
Pittsburgh, PA, SEI/NAWC-92-SR-1 Oct 1992.

Rozum J., Software M easurement Concepts for Acquisition Program Managers, Software
Engineering Inditute, Pittsourgh, PA, CMU/SEI-92-TR-11 Jun 1992.

B-1

SOFTWARE METRICS
PROGRAM HANDBOOK

Acronym and
Abbreviations

APPENDIX C. Comparison of Software Life Cycle Standards

Comparison of MIL-STD-498 development activitiesto 12207:

5.1 Project planning and oversight 5.2 Establish
software devel. environment

5.3.1 Process implementation

5.3 System requirements analysis

5.3.2 System requirements analysis

5.4 System design

5.3.3 System architectural design

5.5 Software requirements analysis

5.3.4 Software requirements analysis

5.6 Software design

5.3.5 Software architectura design 5.3.6 Software
detailed design

5.7 Software implementation and unit testing

5.3.7 Software coding and testing

5.8 Unit integration and testing

5.3.8 Software integration

5.9 CSCI Qualification testing

5.3.9 Software qualification testing

5.10 CSCI/HWCI integration and testing

5.3.10 Software integration

5.11 System qualification testing

5.3.11 System qualification testing

5.12 Preparing for software use

5.3.12 Software installation

5.13 Preparing for software transition

5.3.13 Software acceptance support

5.14 Software configuration management 6.2 CM Process
5.15 Software product evaluation 6.7 Audit Process
5.16 Software quality assurance 6.3 QA Process

5.17 Corrective action

6.8 Problem resolution Process

5.18 Joint technical and management reviews

6.6 Joint review Process

5.19.1 Risk management

2Annex L - Risk Management

5.19.2 Software management indicators

.2 Annex H - Software measurement categories

5.19.3 Security and privacy

5.19.4 Subcontractor management

6.3.3.3 Assure prime requirements passed to subs

5.19.5 Interface with software IV&V agents

5.19.6 Coordination with associate developers

5.19.7 Improvement of project processes

7.3 Improvement Process

Comparison of Reviews

Joint Technical Reviews Technical reviews

C-1

Acronym and
Abbreviations

SOFTWARE METRICS
PROGRAM HANDBOOK

Joint Management Reviews

Project management reviews

Software plan reviews

Software plan reviews

System Requirements Review
(SRR)

Operational concept reviews,
System/subsys reqts review

Operational concept reviews,
System/subsys reqts review

System Design Review (SDR)

System/subsys design review

System/subsys design review

Software Specification Review
(SR

Software requirements review

Software requirements review

Preliminary design Review (PDR)

Software design review

Software design review

Critical Design Review (CDR)

Test Readiness Review (TRR)

Test readiness review

Test results review

Software usability review
Software supportability review
Critical requirements review

Test readiness review

Test resultsreview

Software usability review
Software supportability review
Critical requirementsreview

Functional Configuration Audit
(FCA)

Physical Configuration Audit
(PCA)

Comparison of documents among softwar e standar ds

Document LPSC-
SDP Software Devel opment | 81427 E21 [5314 6.5 Development process plan
Plan (SDP) 524 6.11 Project management plan
STP Software Test Plan 81438 E22 (538 6.18 Software integration plan
(STP)
IP Software Installation |81428 E23 (5552 Migration plan, Software installation
Plan (SIP) 53121 plan, Training plan
7411
CRISD Software Transition (81429 E2 5511 Maintenance plan, 6.8 Maintenance
Plan (STrP) 4. 5552 process plan, Migration plan 6.9
5552 Operation process plan
54
SSDD Operational Concept 81430 F21 (5111 6.3 Concept of operations
Description (OCD) description
SSS System/Subsystem 81431 F22 (5112 6.26 System requirements
Spec (SSS) 53.2 specification
IRS Interface Requirements 81434 F23 (5114 6.22 Software requirements
Spec (IRS) 534 description
SRS Software Requirements 81433 F24 (5114 6.22 Software requirements
Spec (SRS) 534 description, 6.27 Test or validation

C-2

SOFTWARE METRICS Acronym and

PROGRAM HANDBOOK Abbrevigtions
5355 plan
536
537
6.5
SSDD System/Subsys. 81432 G21 |5331 6.25 Software arch.& regtsaloc
Design Description 5332 descr
(SSDD)
IDD Interface Design 81436 G22 |5352 6.19 Software interface design descr
Description (IDD) 5.3.6.2
- Database Design 81437 G23 |5353 6.4 Database design description
Description (DBDD) 536.3
5371
SDD Software Design 81435 G24 |35 6.12 Software arch. description, 6.16
Description (SDD) 536 Software design description
STD Software Test 81439 H21 (5151 6.28 Test or validation procedures
Description (STD) 5371
538
5310
6.5
STR Software Test Report (81440 H22 (5372 6.29 Test or validation results report
(STR) 5382
5391
53101
53111
53131
6.5
SPS Software Product 81441 .21 5312 Software product description
Specification (SPS) 6.22.1
VDD Software Version 81442 1.2. 6.2 6.13 Software config. index record
Description (SVD)
SPM Computer Prog'mg 81447 1.2.3 - -
Manual (CPM)
FSM Firmware Support 81448 .24 - -
Manual (FSM)
SUM Software User Manual |81443 J21 (5341 6.30 User documentation description
(SUM) 5354
5364
5373
5383
5385
5392
- Software Input/Output | 81455 J22 |- --
Manual (SIOM)
- Software Center 81444 J23 |54 6.9 Operation process plan
Operator Mnl (SCOM)
CSOM Computer Operation 81446 J24 |54 6.9 Operation process plan
Manual (COM)

C-3

SOFTWARE METRICS Acronym and
PROGRAM HANDBOOK Abbreviations

APPENDIX D. Earned Vaue Management Overview

Defense Systems Management College
Earned Value Management Gold Card

L -1 BAC
Vo
Management Reserve - ! | ;ﬁg
PMB _Z = A
7 I
/ s 1
v 7 |
$ 7Schedule Variance ~ —m *Z}/ i
V\ |
ACWP Cost :
Variance |
|
|
h T T T T T } } } F-- -
Time Completion
Now Date
VARIANCES (Favorable is positive, Unfavorable is negative)
« Cost Variance CV = BCWP - ACWP CV%= CV / BCWP
* Schedule Variance SV = BCWP -BCWS SV%= SV/ BCWS
« Variance at Completion VAC = BAC-EAC
PERFORMANCE INDICES (Favorable is > 1.0, Unfavorable is < 1.0)
» Cost Efficiency CPl = BCWP,/ACWP
+ Schedule Efficiency SPI = BCWP/BCWS
OVERALL STATUS
. BCWPCUM
* Percent Complete BAC
* Percent Spent ACWPCUM
BAC
TO COMPLETE PERFORMANCE INDEX (TCPI)
TCPI - WORK REMAINING - BAC-BCWP CUM
(EAC) COST REMAINING EAC - ACWP CUM
ESTIMATE AT COMPLETION (EAC = ACWP + Estimate for Remaining Work)
EAC op = —2AC * EACcomposite= ACWP CUM + BAC - BCWP CUM

CPICUM (CPI CUM) » (SPI CUM)

D-1

Acronym and
Abbreviations

SOFTWARE METRICS
PROGRAM HANDBOOK

Contract Price
1

TAB

NCC Profit / Fee
=CBB

[|
PMB

Management Reserve

|
Undistributed Budget

Control Accounts

Work Packages Planning Packages

TERMINOLOGY

NCC - Negotiated Contract Cost
AUW - Authorized Unpriced Work
CBB - Contract Budget Base

OTB - Over Target Baseline

TAB —Total Allocated Budget
BAC - Budget At Completion
PMB - Performance Measurement

Contract price less profit / fee

Work authorized to start, not yet negotiated

Sum of NCC and AUW

Sum of CBB and recognized overrun

Sum of all contract budgets - NCC,CBB or 0TB (includes MR)
Cumulative BCWS - total end point of PMB (excludes MR)
Contract time-phased, budgeted work plan (excludes MR)

Baseline
MR - Management Reserve Contractor PM’s Contingency budget
UB - Undistributed Budget Broadly defined activities not yet distributed toCAs
CA —Control Account Contractor key management control point - CWBS element
WP — Work Package Near-term, detail-planned activities within a CA

PP —Planning Package Far-term CA activities not yet defined into detail Work Packages

BCWS - Budgeted Cost for Work Scheduled
BCWP — Budgeted Cost for Work Performed
ACWP — Actual Cost of Work Performed

Value of work scheduled -- PLAN
Value of work completed -- EARNED VALUE
Cost of work completed -- ACTUAL COSTS INCURRED

EAC - Estimate At Completion Estimate of total contract costs

EVM POLICY (DOD 5000.2-R)

ALTERNATIVE EV MANAGEMENT APPLICATIONS
LEVEL 1. EVMS Industry Standards Management Application
Contractor management system certified as meeting Industry Standards
» Required for non-FFP contract exceeding $73M RDT&E or $315M in procurement (CY00$).
* PM may apply to contracts below-threshold —consider benefits, risk and criticality.
« Contractor must establish, maintain, and use a system that meets the the 32 Industry Standards.
« Cost Performance Report (CPR) delivered as a CDRL item.
* 5 Formats (WBS, Organization, Baseline, Staffing, and Explanations)

LEVEL 2. C/SSR Management Application

Contractor Management system not certified
* Required for non-FFP contract exceeding $6.3M (CY00$) and 12 months in length.
’Reasonably objective’ EV methods acceptable, traceability at higher level (CA vs WP)
*The CPR or the Cost/Schedule Status Report (C/SSR) delivered as a CDRL item.

EVM Home Page — http:/iwww.acq.osd.miljpm/
DSMC EV E-Mail Address — EVM@DSMC.DSM.MIL

DSMC EV Phone No. — (703) 805-2848/2968 (DSN 655) June 2000

D-2

