


Previous Results:

The radar data collected from a correlation receiver is of
the form (weak scatterer model)

η(ν, τ) =

∫∫ ∞
−∞

ρ(ν ′, τ ′)χ(ν − ν ′, τ − τ ′) eiν(τ−τ ′)dτ ′dν ′

where ν is (doppler) frequency, τ is time delay, ρ is the
scatterer density function, and χ is the ambiguity function
associated with the waveform.

For high range resolution waveforms (HRR) we can
approximate

χ(ν − ν ′, τ − τ ′) ∼ δ(τ − τ ′)



HRR “range profile” (static radar and target)

Figure: HRR radar.

Single airborne target
I pulse

sweeps across target
I can be used

to form one-dimensional
“images”

I difficult to
apply to the problem of
“target interpretation”



Figure: HRR airborne radar.

Ground illumination
I all scene elements at

fixed range illuminated
simultaneously

I “ambiguity arcs”



Figure: Ambiguity arcs.



2-D Image Construction

Figure: Back projection.

“triangulation”
I returns

from multiple directions
I ambiguity

arcs represent possible
scatterer locations

I superposition
disambiguates
actual locations



Synthetic Apertures

Figure: Two different schemes for forming a synthetic aperture.
In SAR systems the radar moves with respect to the target as the
data are collected. In ISAR systems the radar is fixed and the
target is assumed to rotate.



Rotated HRR Data

Figure: Geometry of an HRR profile parameterized by target
orientation angle θ.



Since the scattering density function ρθ(ν ′, τ ′) will depend
on target orientation, HRR data are now of the form:

ηθ(ν, τ) =

∫∫ ∞
−∞

ρθ(ν ′, τ ′) δ(τ − τ ′)eiν(τ−τ ′)dτ ′dν ′

where ηθ is the range profile of the target at orientation θ.

I ρθ(ν ′, τ ′) is the rotated version of the one associated
with the stationary target

I define a coordinate system x–y fixed to the target
and define

ρ(x , y) = ρθ=0(ν ′, τ ′)



Then for general θ, we have (coordinate rotation)

ρθ(ν ′, τ ′) = ρ(−τ ′ sin θ + ν ′ cos θ, τ ′ cos θ + ν ′ sin θ)

and the data are of the form

ηθ(ν, τ) =

∫∫ ∞
−∞

ρ(−τ ′ sin θ + ν ′ cos θ,τ ′ cos θ + ν ′ sin θ)

× δ(τ − τ ′) eiν(τ−τ ′)dτ ′dν ′

Change of variables

ν ′ = x cos θ + y sin θ τ ′ = −x sin θ + y cos θ



⇒ data are of the form

ηθ(ν, τ) =

∫∫ ∞
−∞

ρ(x , y) δ(τ + x sin θ − y cos θ)

× eiν(τ+x sin θ−y cos θ)dxdy

=

∫∫ ∞
−∞

ρ(x , y) δ(τ + x sin θ − y cos θ)dxdy

(The complex exponential will have vanishing argument
under integration and so drops.)



The Radon Transform
Owing to the δ-function in the integrand, this is just the line
integral of ρ(x , y) along the line L(τ ; θ) defined by

τ + x sin θ − y cos θ = 0

I These ηθ(ν, τ) are independent of ν
I the double integral restricted to the line L(τ ; θ) (or the

equivalent line integral itself) is known as the Radon
Transform of ρ(x , y):1

ρ(τ, θ) = {Rρ}(τ, θ) ≡
∫∫ ∞
−∞

ρ(x , y) δ(τ + x sin θ−y cos θ)dxdy

1The Radon Transform was introduced in 1917 by Johann Radon.
This transform is important in computerized tomography (CT), where it is
known as the “sinogram.”



Example: Sinogram of two point scatterers.

ρ(x , y) = δ(x − x1) δ(y − y1) + δ(x − x2) δ(y − y2)

(two equal strength point scatterers at (x1, y1) and (x2, y2)).

{Rρ}(τ, θ) =

∫∫ ∞
−∞

[δ(x − x1) δ(y − y1) + δ(x − x2) δ(y − y2)]

× δ(τ + x sin θ − y cos θ)dxdy

= δ(τ + x1 sin θ − y1 cos θ) + δ(τ + x2 sin θ − y2 cos θ)

= δ(τ − r1 sin(φ1 − θ)) + δ(τ − r2 sin(φ2 − θ))

where rn =
√

x2
n + y2

n and φn = arctan(yn/xn), n = 1, 2.
(I.e., a pair of sine curves.)



Projection-Slice Theorem

Fix θ and consider ρ(τ, θ) = ρθ(τ) to be a function only of τ
(that is, one function of τ for each θ). The Fourier transform
of ρθ(τ) is

{F ρθ}(ω) =

∫ ∞
−∞

ρθ(τ)e−iωτdτ

=

∫∫∫ ∞
−∞

ρ(x , y) δ(τ + x sin θ − y cos θ) e−iωτdτdxdy

=

∫∫ ∞
−∞

ρ(x , y) eiω(x sin θ−y cos θ)dxdy

=

∫∫ ∞
−∞

ρ(x , y) e−i(κx x+κy y)dxdy

where κx ≡ −ω sin θ and κy ≡ ω cos θ.



Note, however, that the Fourier transform of ρ(x , y) in two
dimensions is given by

P(κx , κy) =

∫∫ ∞
−∞

ρ(x , y)e−i(κx x+κy y)dxdy

so, evidently, we have

P(−ω sin θ, ω cos θ) = {F ρθ}(ω)

This result is known as the “Projection-Slice Theorem” and,
since ρ(x , y) can be determined from the inverse Fourier
transform of P(κx , κy), we can use this theorem to build an
inverse Radon transform for ρ(τ, θ).



Filtered Backprojection
Change of variables (κx , κy) 7→ (ω, θ), where κx ≡ −ω sin θ
and κy ≡ ω cos θ ⇒

ρ(x , y) =
1

(2π)2

∫∫ ∞
−∞

P(κx , κy)ei(κx x+κy y)dκxdκy

=
1

(2π)2

∫ 2π

0

∫ ∞
−∞
{F ρθ}(ω)e−iω(x sin θ−y cos θ)∂(κx , κy)

∂(ω, θ)
dωdθ

=
1

(2π)2

∫ 2π

0

∫ ∞
−∞
{F ρθ}(ω)e−iω(x sin θ−y cos θ)|ω|dωdθ

=
1

(2π)2

∫ 2π

0

∫ ∞
−∞

(
|ω|{F ρθ}(ω)

)
eiω(−x sin θ+y cos θ)dωdθ

The inner integral is just the inverse Fourier transform of the
product

Q(ω) ≡ |ω| × {F ρθ}(ω)

which behaves like a “smoothing filter” acting on ρθ(τ).



The inverse Fourier transform of Q(ω) is

q(t) =
1

2π

∫ ∞
−∞

Q(ω)eiωtdω

and so we can write

ρ(x , y) =
1

2π

∫ 2π

0
q(−x sin θ + y cos θ)dθ

where (substituting for {F ρθ}(ω)), we obtain

q(t) =
1

2π

∫∫ ∞
−∞

ρθ(τ) |ω| eiω(t−τ)dωdτ

These last two equations are collectively known as the
filtered backprojection algorithm.



Filtered Backprojection in MatLab: iradon

Figure: Example of filtered backprojection using discrete angle
data.



The “Fourier Approach”

When the synthetic aperture ∆θ is small so that
0 ≤ θ ≤ ∆θ � 1, then the small angle approximation yields

{F ρθ}(ω) =

∫∫ ∞
−∞

ρ(x , y)eiω(x sin θ−y cos θ)dxdy

≈
∫∫ ∞
−∞

ρ(x , y)eiω(xθ−y)dxdy

Let kx ≡ −ωθ and ky ≡ ω. For the (frequency domain) data
set {F ρθ}(ω) 7→ P(kx , ky), we can recover ρ(x , y) by simple
Fourier inversion:

ρ(x , y) =
1

(2π)2

∫∫ ∞
−∞

P(kx , ky) ei(kx x+ky y)dkxdky



Figure: Data domain. Here, ky = ω is a polar radial direction and
kx = ωθ is an arclength (for each ω).



Focussing

The data set mapping

{F ρθ}(ω) 7→ P(kx , ky)

is defined over a (small angle) grid in polar coordinates.

I Fourier inversion formula is appropriate to data
defined on a rectangular grid

I When the aperture is sufficiently small and ω is
sufficiently large, the polar grid is pretty close to
rectangular in shape

I General case: data must be interpolated to a
rectangular grid before Fourier inversion

I In the radar community, this additional preprocessing
step is known as “focussing”



Figure: Data interpolation to a rectangular grid before Fourier
inversion.



Resolution
The image is constructed by a Fourier domain version of a
convolution with an imaging kernel determined by the
inverse Fourier transform of

K (kx , ky) = ei(kx x+ky y) (restricted to finite bandwidth)

For finite bandwidth signals, the spatial-domain version of
this imaging kernel is a product of sinc functions and the
width of the central lobes provides an estimate of
resolution. We can conclude that the dimensions ∆x and
∆y of a resolution cell are

∆x ≈ 2π
∆kx

≈ 2π
ω∆θ

and ∆y ≈ 2π
∆ky

≈ 2π
∆ω

where ω is the average frequency, ∆θ denotes the
aperture size, and ∆ω denotes the bandwidth. (This
analysis is only appropriate for small-angle apertures.)



Example ISAR Image

Figure: Example ISAR image of a B-727 jetliner (orientation
displayed in inset) created using a radar system with center
frequency 9.25 GHz and bandwidth 500 MHz. The synthetic
aperture subtended approximately 4◦.



Practical Complications

I This imaging method requires the integration of pulses
collected over many aspects⇒ the radar must
maintain coherence over the synthetic aperture (to
avoid destructive interference)

I synthetic aperture data collection process is dynamic
— it relies on target/radar relative motion

I rotation about the body’s center of mass
I translation of that center of mass

I rotation part of the relative radar/target motion used
to reconstruct an image

I (usually) while target is rotates it will also translates
I target range R contributes to the overall phase of the

data (by the factor eikR)⇒ unaccounted for
variations in R over the aperture will degrade the
coherence of the pulse stream and corrupt the final
image.



Range Alignment
Can maintain coherence by subtracting target translation
effects before imaging

I assume HRR pulse sweeps across the target faster than
the target moves (“start-stop” approximation)

I range profile data ρθ(τ) are then of the form
ρθ(τ + ∆τθ), where ∆τθ is a range offset that is
determined by target motion between pulses.

The collected range profiles can be shifted to a common
origin if we can determine ∆τθ for each θ.

One method:
I assume that one of the peaks in each of the range

profiles (for example, the strongest peak) is always
due to the same target feature and so provides a
convenient origin

I shift all other ρθ so that their main peaks align to this
origin



Figure: Range alignment preprocessing in synthetic aperture
imaging. The effects of target translation must be removed
before backprojection can be applied.



Figure: Alignment peak scintillation⇒
peak-based alignment may not be
possible.

When
the strongest peak
is not a single point
but, rather, several
closely spaced and
unresolved scattering
centers, then
interference effects
can cause the range
profile alignment
feature to vary
rapidly across the
synthetic aperture.



For such ”scintillating targets,” other alignment methods
are used: for example, if the target is assumed to move
along a “smooth” path, then

R(t) = R(0) + Ṙt + 1
2 R̈t2 + 1

6
...
R t3

In terms of this polynomial we can write

∆τθ = 2
R(tθ)− R(0)

c

= 2
Ṙtθ + 1

2 R̈t2
θ + 1

6
...
R t3

θ

c

where tθ denotes the starting point of the θ-th pulse and
Ṙ, R̈, and

...
R are radar measurables.2

2Typically, this is implemented in the Fourier domain using the shift
theorem.
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