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[bookmark: _GoBack]Module #1 Homework Solutions

1.1	a. Population: all generation X age US citizens (specifically, assign a ‘1’ to those who want to start their own business and a ‘0’ to those who do not, so that the population is the set of 1’s and 0’s).  Objective: to estimate the proportion of generation X age US citizens who want to start their own business.
b. Population: all healthy adults in the US.  Objective: to estimate the true mean body temperature
c. Population: all single family dwelling units in the city.  Objective: to estimate the true mean water consumption
d. Population: all tires manufactured by the company for the specific year.  Objective: to estimate the proportion of tires with unsafe tread.
e. Population: all adult residents of the particular state.  Objective: to estimate the proportion who favor a unicameral legislature.
f. Population: all times until recurrence for all people who have had a particular disease.  Objective: to estimate the true average time until recurrence.
g. Population: lifetime measurements for all resistors of this type.  Objective: to estimate the true mean lifetime (in hours).


1.2 We’re given data on the wind speed (in mph) in 45 cities and asked to do some calculations and answer some questions.
a. First, we read the data into R and create a histogram.  
> ex1.2 <- read.csv(file.choose())
Note that Mt. Washington is the 31st observation.  So, an easy way to tell R to ignore it is with the syntax ex1.2$MPH[-31], which we can use directly in the histogram function:
> hist(ex1.2$MPH[-31])
[image: ]
Another possibility is to simply change the scale on the x-axis of the plot so that Mt. Washington is left off.  One way to do that is:
> hist(ex1.2$MPH, xlim=c(0,15))

b. Wikipedia says Mt. Washington, NH, Wikipedia "is the highest peak in the Northeastern United States at 6,288 ft (1,917 m), famous for dangerously erratic weather."  So, yes, geography explains this "outlier" in the data.  It is neither a typo nor some other type of mistake.  It's real and correct data. 
c. To answer this question you could have simply counted the number of cities with wind speeds greater than 10.3 by hand.  Here's a neat way to do it in R.  First note that the syntax  ex1.2$MPH > 10.3 will result in a vector of true/false logicals corresponding to whether each city's wind speed is greater than 10.3 or not.  We can then use the table() function to count them up: 
> table(ex1.2$MPH > 10.3)
FALSE  TRUE 
   34    11
So here we see that 11 out of the 45 cities have wind speeds greater than 10.3 mph, or 24.4%.  If you wanted to get a table of percentages right in R:
> table(ex1.2$MPH > 10.3)/length(ex1.2$MPH)
    FALSE      TRUE 
0.7555556 0.2444444
d. Well, this is a bit hard to answer definitively since we don't know which cities are included in this list of 45.  However, given that almost a quarter of the cities in this list have higher average wind speeds, Chicago does not seem particularly windy.

Let’s add a boxplot (or two)
boxplot(ex1.2$MPH, horizontal = TRUE, xlab="Wind MPH")

[image: ]

boxplot(ex1.2$MPH[-31], horizontal = TRUE, xlab="Wind MPH")

[image: ]
1.9  	Given the breathing rates are normally distributed with a mean of 12 and a standard deviation of 2.3 breaths per minute, this is just an exercise in looking up probabilities from a normal distribution.  Let X~N(12,2.32), then
a. 

.  Solving this by looking up the probability in Table 4 gives . A sufficient answer would also have been to invoke the Empirical Rule that says 68 percent of the observations are within one standard deviation of the mean.  You could also have solved this in R with
> 1-2*pnorm(-1)   !Note: P(Z ≥ 1) = P(Z ≤ -1)…draw the picture
[1] 0.6826895
or with
> pnorm(1)- pnorm(-1)
[1] 0.6826895
or with
> pnorm(14.3,12,2.3)- pnorm(9.7,12,2.3)
[1] 0.6826895
b. 

.  Solving this by looking up the probability in Table 4 gives . A sufficient answer would also have been to invoke the Empirical Rule that says 95 percent of the observations are within two standard deviations of the mean.  And, you could also have solved this in R with
> 1-2*pnorm(-2)  !Note: P(Z ≥ 2) = P(Z ≤ -2)
[1] 0.9544997
or with
> pnorm(16.6,12,2.3)- pnorm(7.4,12,2.3)
[1] 0.9544997
c. 

Solving this by looking up the probability in Table 4 gives . You could also have solved this in R with
> pnorm(2)- pnorm(-1)
[1] 0.8185946
or with
> pnorm(16.6,12,2.3)- pnorm(9.7,12,2.3)
[1] 0.8185946
d. The problem is to calculate

.

Solving this by looking up the probability in Table 4 gives . A sufficient answer would also have been to invoke the Empirical Rule that says 99.7 percent of the observations are within three standard deviations of the mean.  You could also have solved this in R with
> 2*pnorm(-3)
[1] 0.002699796
or with
> pnorm(5.1,12,2.3)+ (1-pnorm(18.9,12,2.3))
[1] 0.002699796

1.11 	This way of calculating the sample variance is sometimes called the "shortcut" formula.  Notice that you only need to calculate the square of the sums of the observations and the sum of the squares of the observations.  
	If you were writing a computer program to calculate the sample variance, then using this form is more efficient as you would only have to loop through the observations once.  Using the other form, you would have to loop twice, first to calculate the sample mean, then second to calculate and sum up the deviations from the mean.


	The derivation is really just a matter of algebra, along with recognizing that is a constant inside the summation and that :





1.13 	Using the data from exercise 1.2, calculate:

a. 
Sample mean, :
> mean(ex1.2$MPH)
[1] 9.791111
Sample standard deviation, s:
> sd(ex1.2$MPH)
[1] 4.138007
b. 
Now, calculate the intervals for k=1, 2, and 3, and count the number of measurements that fall in each.  Here I do it in R:

> mean(ex1.2$MPH)-1*sd(ex1.2$MPH)  
[1] 5.653104
> mean(ex1.2$MPH)+1*sd(ex1.2$MPH)
[1] 13.92912
> mean(ex1.2$MPH)-2*sd(ex1.2$MPH)  
[1] 1.515097
> mean(ex1.2$MPH)+2*sd(ex1.2$MPH)
[1] 18.06712
> mean(ex1.2$MPH)-3*sd(ex1.2$MPH)  
[1] -2.62291
> mean(ex1.2$MPH)+3*sd(ex1.2$MPH)
[1] 22.20513

> table(ex1.2$MPH >= 5.653104 & ex1.2$MPH <= 13.92912)/45

     FALSE       TRUE 
0.02222222 0.97777778


> table(ex1.2$MPH >= 1.515097 & ex1.2$MPH <= 18.06712)/45

     FALSE       TRUE 
0.02222222 0.97777778

> table(ex1.2$MPH >= -2.62291 & ex1.2$MPH <= 22.20513)/45

     FALSE       TRUE 
0.02222222 0.97777778

This is not what we'd expect from the empirical rule.  What's going on here?  The answer is that the Mt. Washington outlier is making the standard deviation so large it's messing things up.  Here's the standard deviation without Mt. Washington and the resulting tables:

> mean(ex1.2$MPH[-31])
[1] 9.215909
> sd(ex1.2$MPH[-31])
[1] 1.512113

> mean(ex1.2$MPH[-31])-1*sd(ex1.2$MPH[-31])  
[1] 7.703796
> mean(ex1.2$MPH[-31])+1*sd(ex1.2$MPH[-31])
[1] 10.72802
> mean(ex1.2$MPH[-31])-2*sd(ex1.2$MPH[-31])  
[1] 6.191683
> mean(ex1.2$MPH[-31])+2*sd(ex1.2$MPH[-31])
[1] 12.24013
> mean(ex1.2$MPH[-31])-3*sd(ex1.2$MPH[-31])  
[1] 4.679571
> mean(ex1.2$MPH[-31])+3*sd(ex1.2$MPH[-31])
[1] 13.75225

> table(ex1.2$MPH >= 7.703796 & ex1.2$MPH<= 10.72802)/45

    FALSE      TRUE 
0.2888889 0.7111111

> table(ex1.2$MPH >= 6.191683 & ex1.2$MPH <= 12.24013)/45

     FALSE       TRUE 
0.08888889 0.91111111

> table(ex1.2$MPH >= 4.679571 & ex1.2$MPH <= 13.75225)/45

     FALSE       TRUE 
0.02222222 0.97777778

This is much closer to what we'd expect.  Remember, the empirical rule applies when the data are (nearly) normal.    

1.17 Here we're asked to compare the range divided by 4 as an approximation to the standard deviation.  From the previous problem we know that s = 4.1 with Mt. Washington in the data set and s = 1.5 without Mt. Washington.  So, let's calculate the range/4 with and without Mt. Washington:

> diff(range(ex1.2$MPH))/4  
[1] 7.35

> diff(range(ex1.2$MPH[-31]))/4  
[1] 1.75
	So, it's a decent good approximation without Mt. Washington, but poor when Mt. Washington is included.  


1.25 	We're given the time to failure of n=88 radio transmitter-receivers and asked to answer a series of questions.
a. First, we read the data into R.  
> ex1.25<-read.csv(file.choose())
Now, to estimate the standard deviation using the range, we have.  

> diff(range(ex1.25$TTF))/4  
[1] 177
Turns out, it's not too bad.  Compare the above with  

> sd(ex1.25$TTF)  
[1] 162.1728

b. Now, a histogram of the data:  
> hist(ex1.25$TTF)  
[image: ]
Here we see it's very skewed to the right.  If we wanted to see a bit more detail in the distribution, we could increase the number of breaks, as in:
> hist(ex1.25$TTF,breaks=20)  


[image: ]

c. The mean and standard deviation (the latter of which we've already computed):  
> mean(ex1.25$TTF)  
[1] 210.7955
> sd(ex1.25$TTF)  
[1] 162.1728

d. 
Now, calculate the intervals for k=1, 2, and 3, and count the number of measurements that fall in each.  As before, I do it in R:

> mean(ex1.25$TTF)-1*sd(ex1.25$TTF)  
[1] 48.6227
> mean(ex1.25$TTF)+1*sd(ex1.25$TTF)
[1] 372.9682
> mean(ex1.25$TTF)-2*sd(ex1.25$TTF)  
[1] -113.5501
> mean(ex1.25$TTF)+2*sd(ex1.25$TTF)
[1] 535.141
> mean(ex1.25$TTF)-3*sd(ex1.25$TTF)  
[1] -275.7228
> mean(ex1.25$TTF)+3*sd(ex1.25$TTF)
[1] 697.3137

> table(ex1.25$TTF >= 48.6227 & ex1.25$TTF <= 372.9682)/88

    FALSE      TRUE 
0.2840909 0.7159091


> table(ex1.25$TTF >= -113.5501 & ex1.25$TTF <= 535.141)/88

     FALSE       TRUE 
0.06818182 0.93181818

> table(ex1.25$TTF >= -275.7228 & ex1.25$TTF <= 697.3137)/88

     FALSE       TRUE 
0.01136364 0.98863636

These percentages are much closer to the empirical rule (compared to the windy city problem): 71.5% versus 68%, 93% versus 95%, and 98.8% versus 99.7%.
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